Python 迭代器工具包【推荐】

515次阅读  |  发布于5年以前

  原文:https://git.io/pytips

  0x01 介绍了迭代器的概念,即定义了 iter() 和 next() 方法的对象,或者通过 yield 简化定义的"可迭代对象",而在一些函数式编程语言(见 0x02 Python 中的函数式编程)中,类似的迭代器常被用于产生特定格式的列表(或序列),这时的迭代器更像是一种数据结构而非函数(当然在一些函数式编程语言中,这两者并无本质差异)。Python 借鉴了 APL, Haskell, and SML 中的某些迭代器的构造方法,并在 itertools 中实现(该模块是通过 C 实现,源代码:/Modules/itertoolsmodule.c)。

  itertools 模块提供了如下三类迭代器构建工具:

  无限迭代

  整合两序列迭代

  组合生成器

  1. 无限迭代

  所谓无限(infinite)是指如果你通过 for...in... 的语法对其进行迭代,将陷入无限循环,包括:

  


    count(start, [step])

      cycle(p)

      repeat(elem [,n])

  从名字大概可以猜出它们的用法,既然说是无限迭代,我们自然不会想要将其所有元素依次迭代取出,而通常是结合 map/zip 等方法,将其作为一个取之不尽的数据仓库,与有限长度的可迭代对象进行组合操作:

  


    from itertools import cycle, count, repeat
    print(count.__doc__)
      count(start=0, step=1) --> count object
      Return a count object whose .__next__() method returns consecutive values.
      Equivalent to:
      def count(firstval=0, step=1):
      x = firstval
      while 1:
      yield x
      x += step
      counter = count()
      print(next(counter))
      print(next(counter))
      print(list(map(lambda x, y: x+y, range(10), counter)))
      odd_counter = map(lambda x: 'Odd#{}'.format(x), count(1, 2))
      print(next(odd_counter))
      print(next(odd_counter))

      0

      1

      [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

      Odd#1

      Odd#3

      print(cycle.__doc__)

      cycle(iterable) --> cycle object

      Return elements from the iterable until it is exhausted.

      Then repeat the sequence indefinitely.

      cyc = cycle(range(5))

      print(list(zip(range(6), cyc)))

      print(next(cyc))

      print(next(cyc))

      [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 0)]

      1

      2

      print(repeat.__doc__)

      repeat(object [,times]) -> create an iterator which returns the object

      for the specified number of times. If not specified, returns the object

      endlessly.

      print(list(repeat('Py', 3)))

      rep = repeat('p')

      print(list(zip(rep, 'y'*3)))

      ['Py', 'Py', 'Py']

      [('p', 'y'), ('p', 'y'), ('p', 'y')]

  2. 整合两序列迭代

  所谓整合两序列,是指以两个有限序列为输入,将其整合操作之后返回为一个迭代器,最为常见的 zip 函数就属于这一类别,只不过 zip 是内置函数。这一类别完整的方法包括:

 


     accumulate()

      chain()/chain.from_iterable()

      compress()

      dropwhile()/filterfalse()/takewhile()

      groupby()

      islice()

      starmap()

      tee()

      zip_longest()

  这里就不对所有的方法一一举例说明了,如果想要知道某个方法的用法,基本通过 print(method.doc) 就可以了解,毕竟 itertools 模块只是提供了一种快捷方式,并没有隐含什么深奥的算法。这里只对下面几个我觉得比较有趣的方法进行举例说明。

  


    from itertools import cycle, compress, islice, takewhile, count

      # 这三个方法(如果使用恰当)可以限定无限迭代

      # print(compress.__doc__)

      print(list(compress(cycle('PY'), [1, 0, 1, 0])))

      # 像操作列表 l[start:stop:step] 一样操作其它序列

      # print(islice.__doc__)

      print(list(islice(cycle('PY'), 0, 2)))

      # 限制版的 filter

      # print(takewhile.__doc__)

      print(list(takewhile(lambda x: x < 5, count())))

      ['P', 'P']

      ['P', 'Y']

      [0, 1, 2, 3, 4]

      from itertools import groupby

      from operator import itemgetter

      print(groupby.__doc__)

      for k, g in groupby('AABBC'):

      print(k, list(g))

      db = [dict(name='python', script=True),

      dict(name='c', script=False),

      dict(name='c++', script=False),

      dict(name='ruby', script=True)]

      keyfunc = itemgetter('script')

      db2 = sorted(db, key=keyfunc) # sorted by `script'

      for isScript, langs in groupby(db2, keyfunc):

      print(', '.join(map(itemgetter('name'), langs)))

      groupby(iterable[, keyfunc]) -> create an iterator which returns

      (key, sub-iterator) grouped by each value of key(value).

      A ['A', 'A']

      B ['B', 'B']

      C ['C']

      c, c++

      python, ruby

      from itertools import zip_longest

      # 内置函数 zip 以较短序列为基准进行合并,

      # zip_longest 则以最长序列为基准,并提供补足参数 fillvalue

      # Python 2.7 中名为 izip_longest

      print(list(zip_longest('ABCD', '123', fillvalue=0)))

      [('A', '1'), ('B', '2'), ('C', '3'), ('D', 0)]

  3. 组合生成器

  关于生成器的排列组合: 


    product(*iterables, repeat=1):两输入序列的笛卡尔乘积

      permutations(iterable, r=None):对输入序列的完全排列组合

      combinations(iterable, r):有序版的排列组合

      combinations_with_replacement(iterable, r):有序版的笛卡尔乘积

      from itertools import product, permutations, combinations, combinations_with_replacement

      print(list(product(range(2), range(2))))

      print(list(product('AB', repeat=2)))

      [(0, 0), (0, 1), (1, 0), (1, 1)]

      [('A', 'A'), ('A', 'B'), ('B', 'A'), ('B', 'B')]

      print(list(combinations_with_replacement('AB', 2)))

      [('A', 'A'), ('A', 'B'), ('B', 'B')]

      # 赛马问题:4匹马前2名的排列组合(A^4_2)

      print(list(permutations('ABCDE', 2)))

      [('A', 'B'), ('A', 'C'), ('A', 'D'), 
     ('A', 'E'), ('B', 'A'), ('B', 'C'), 
     ('B', 'D'), ('B', 'E'), ('C', 'A'), 
     ('C', 'B'), ('C', 'D'), ('C', 'E'), 
     ('D', 'A'), ('D', 'B'), ('D', 'C'), 
     ('D', 'E'), ('E', 'A'), ('E', 'B'), ('E', 'C'), ('E', 'D')]

      # 彩球问题:4种颜色的球任意抽出2个的颜色组合(C^4_2)

      print(list(combinations('ABCD', 2)))

      [('A', 'B'), ('A', 'C'), ('A', 'D'), ('B', 'C'), ('B', 'D'), ('C', 'D')]

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8