堀口直人是 IMEC(比利时微电子研究中心)逻辑 CMOS 微缩项目主管,曾在富士通实验室和加州大学圣巴巴拉分校等机构任职。目前,堀口直人的研发重点就是 2nm 以下的 CMOS 器件。
以下是芯东西对堀口直人就 3nm 晶体管结构发展回顾的完整编译。
▲ IMEC 逻辑 CMOS 微缩项目主管堀口直人
纳米片结构:进一步增强驱动电流兼具可变性
一直以来,为了追寻摩尔定律,半导体产业在微缩逻辑 CMOS 尺寸上做出了相当大的努力。一种主要的方法是通过减少金属连线(或轨道)来降低单元高度(cell height),单元高度也就是每个单元的金属线数量乘以金属间距(metal pitch,即金属连线的最小宽度 + 金属连线之间的最小间距)。
对于 FinFET 结构来说,通过将一个标准单元内的鳍片(Fin)的数量从 3 个减少到 2 个,就可以在性能上跃进一大步。
▲ 标准逻辑单元示意图(CPP = 接触多晶间距,FP = 鳍片间距,MP = 金属间距;单元高度 = 每个单元的金属线数 x 金属间距)
标准单元内单元高度中有几条金属连线则是一个重要指标,通常在单元高度范围内有几条金属线就称为几 T。随着鳍片减少,单元高度逐渐变小,标准单元从 7.5T 变为了 6T。然而这种缩小牺牲了内部的驱动电流和可变性,为了弥补这些性能的退化,鳍片在单元的高度微缩中也变得越来越高。
但是到了 5T FinFET 后,单鳍即便再高,其驱动电流却很难随之提升。通过垂直堆叠纳米片状导电沟道,纳米片结构晶体管可以在标准单元内实现更大的有效沟道宽度。
通过这种方式,纳米片结构的晶体管可以提供比鳍片更大的驱动电流,也是进一步微缩 CMOS 的基础。同时纳米片结构还允许可变的器件宽度,在设计中具备更高的灵活性。因为驱动电流有所增加,设计人员可以减少单元尺寸和电容,以降低每片之间的寄生电容。
▲ 标准单元微缩演进示意图
4 大关键工艺步骤实现纳米片晶体管
除了驱动电流和可变性,纳米片的环栅结构也优于 FinFET 结构。就像从平面 MOSFET 过渡到 FinFET 一样,全栅纳米片也伴随着新工艺集成挑战。
幸运的是,纳米片基本算是 FinFET 的自然演变,许多为 FinFET 开发和优化的工艺模块可以重复使用。这无疑促进了纳米片结构在半导体行业中的应用,但也有很多工艺制程需要创新。IMEC 确定了两个结构不同的 4 个关键工艺步骤,需要进行创新。
第一,纳米片结构使用外延生长的多层 Si 和 SiGe 来作为器件沟道。器件沟道使用生长材料以及 2 种材料之间的晶格常数不同,是纳米片结构和传统 CMOS 器件的一大区别。
在多层堆叠中,SiGe 用作牺牲层(sacrifice),该层会在金属栅极替换工艺步骤中的沟道释放时移除。因为多层堆叠会以鳍的形式进行图案化,鳍片容易发生形变。
在 2017 IEDM 会议上,IMEC 提出了一个关键优化:实施浅沟槽隔离(STI)衬里,并在 STI 工艺步骤中使用低热来抑制氧化引起的鳍片变形。这不仅能够保持纳米片形状,也可以提高设备的直交流性能,即驱动电流和恒定功率下的速度增益。改进的交流性能可以转化为环形振荡电路的较低门延迟。
第二,与 FinFET 不同的是,纳米片结构需要一个内部隔离物(inner spacer),即一种额外的电介质,将栅极与源极/漏极隔离以降低电容。
内部隔离物的工艺中,横向蚀刻工艺会使多层堆叠结构中的 SiGe 层外部凹陷,产生小空腔,需要半导体厂商使用电介质材料填充这些空腔。这就是纳米片工艺流程中最复杂的工艺模块“内部间隔集成(Inner spacer integration)”,它需要高蚀刻选择性和精确的横向蚀刻控制,包括 IMEC 在内的全球多个研究团队解决了这一挑战。
第三是纳米片沟道释放,即纳米片相互分离的步骤。正如前文所述,这种释放往往通过选择性的蚀刻掉多层 SiGe 来实现。该工艺中,需要半导体厂商进行高度选择性的蚀刻,简单来说就是尽量多地将纳米片间的 Ge 残留物蚀刻掉,同时不要使 Si 变得粗糙。
这就需要研究人员控制静摩擦,以减少纳米片间的连接。IMEC 对不同蚀刻工艺的研究为解决这一问题做出了较大贡献。
第四个则是替代金属栅极(RMG)集成步骤,包括在纳米片层周围工作功能金属(work function metal)的沉积和图案化。
2018 年,IMEC 强调了引述可扩展工作功能今数的重要性,从而减少了纳米片堆叠所占的垂直空间。IMEC 曾展示了将两个垂直纳米片之间的间隔物从 13nm 减少到 7nm,并将芯片的 AC 性能提升了 10%。
▲ 垂直堆叠环栅纳米片晶体管的优化:改善纳米片形状控制(左),纳米片垂直空间缩减分离(右)
Forksheet:增强器件直流性能 静电控制不佳
如果想要进一步提升直流性能,最有效的方法使扩大沟道的有效宽度。但是,在纳米片结构下,这变得非常困难。主要使因为 n 型和 p 型器件需要较大的空间,这使得在按比例微缩的单元高度上难以将纳米片的有效宽度扩大。
2017 年,IMEC 首次公开提出 Forksheet 器件结构用来微缩 SRAM,2019 年 IMEC 又将这一器件结构用在逻辑芯片标准单元中。
和纳米片结构相比,Forksheet 在栅极图案化之前,通过在 p 和 n 型器件间引入介电墙,实现更小的 n、p 间距,进一步增强了沟道的有效宽度以及直流性能。
这也让研究人员可以利用较小的 n、p 间隔,将标准单元的单元高度从 5T 推进到 4T。仿真结果显示,Forksheet 已比传统纳米片有 10% 的速度增益。这种性能提升的部分原因是由于栅极-漏极重叠较小而导致的(寄生)Miller 电容减小。
从工艺角度来看,Forksheet 结构是从纳米片演变而来,2 者的关键区别在于电介质壁的形成、改进的内部隔离层、源极/漏极外延和替换金属栅极步骤。
在 VLSI 2021 会议上,IMEC 首次展示了使用 300mm Forksheet 集成的 Forksheet 场效应器件的电气数据。双工作功能金属栅极可以在 n-和 pFET 之间以 17nm 的间距集成,突出了 Forksheet 结构的关键优势。
但是,Forksheet 仍不完美。纳米片结构的环栅在很大程度上改善了对沟道的静电控制。Forksheet 则采用了分叉形式的三门结构,似乎在静电控制上有所退步。
▲ 集成在一起的纳米片和 Forksheet 结构对比
CFET:CMOS 器件最终结构 2 种方案各有利弊
为了解决 Forksheet 的静电控制问题,CFET 随即诞生。
CFET 结构可以进一步最大化有效沟道宽度,其中 n 极和 p 极堆叠在彼此顶部,可以进一步减小单元面积,扩大沟道宽度,推动标准单元到 4T 及以下。
仿真证明,CFET 对于逻辑芯片与 SRAM 尺寸微缩都有帮助。通过 CFET,沟道可以制成鳍(n-fin on p-fin)或纳米片(n-sheet on p-sheet)的形式。
而纳米片形式的 CFET 完善了纳米片结构的问题,是 CMOS 器件的最终结构。IMEC 则在开发模块和集成工艺上有着很大的贡献,还量化了每个流程的功耗性能收益和复杂性。
▲ 从 FinFET 到 CFET 的晶体管结构演进过程
从处理角度来说,由于 nMOS-pMOS 垂直堆叠,CFET 的结构较为复杂,有两种可能的集成方案,分别是单片集成(monolithic)和顺序集成(sequential),这两种集成方案则各有利弊。
具体来说,单片 CFET 的成本较低,但是垂直集成十分复杂。单片 CFET 从底部沟道外延生长开始,然后是中间牺牲层的沉积,最后是顶部沟道的外延生长。当以纳米片沟道为目标时,起始的底部和顶部沟道配置可以是 Si 鳍片或 Si/SiGe 多层堆栈的形式。
无论那种形式,堆叠都会导致非常高的垂直结构,这给鳍片、栅极、间隔和源/漏接触的进一步图案化带来了关键的挑战。例如,替换金属栅极集成步骤由于需要用于 n 和 p 不同的工作功能金属而更加复杂。在 VLSI 2020 上,IMEC 率先展示了通过优化关键模块步骤实现的单片集成 CFET 结构。
而相对来说,顺序 CFET 的集成流程较为简单。CFET 顺序集成由几个模块组成,首先对底层器件进行处理。然后使用介电到介电晶片键合技术,通过晶圆转移在该层的顶部创建覆盖半导体层。最后,集成顶层器件,连接顶栅和底栅。因为底层和顶层设备都可以用传统的二维方式单独处理,所以顺序 CFET 可以灵活地集成用于 n 型和 p 型的不同沟道材料,进一步提升性能优势。
但是作为新的方案,顺序 CFET 也需要解决一些挑战。第一个是涉及 2 个晶片之间键合介电氧化物厚度。过厚的氧化物会降低交流性能,但过薄的氧化物会产生键和缺陷风险。IMEC 的薄键合氧化物工艺是解决氧化物厚度的一个方案,该工艺无键合空洞并且研发已经取得了进展。
顺序 CFET 需要面对的第二个挑战是晶圆转移方法有热预算限制,需要降低顶层工艺温度到 500°C 避免对底层器件产生负面影响,而该工艺此前需要 900℃。
IMEC 最近针对这两个问题提出了解决方案,可以在较低的处理温度下使栅极堆叠保持可靠性。一种是通过低温氢等离子体处理钝化硅氧化物夹层中的缺陷;第二种则是将界面偶极子 Si 引入沟道和 HfO2 栅极电解质之间,以抵消 HfO2 缺陷态和电荷载流子导带之间的能量。
05.结语:先进制程玩家减少,竞争烈度或加剧
回顾从 FinFET 到 CFET 的研发过程,每一代结构的改进都伴随着交流/直流性能的改进和标准单元高度的进一步降低。从处理的角度来看,纳米片结构可以被认为是 FinFET 结构的进化步骤。然而,每种不同的纳米片结构都面临着特定的集成挑战。
随着芯片制程的不断发展,有能力继续追求先进制程的玩家越来越少。IMEC 作为芯片制程工艺的重要研发力量,有力地推动了芯片制程的微缩。此前,IMEC CEO 曾接受采访称,要将芯片制程推进 1nm 以内。无论如何,人们对于更高性能、更少功耗的追求不会改变。届时,先进制程的竞争可能会更加激烈。
推荐文章
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8