目前科学家搜索地外生命主要有三条路径。第一条是向太阳系之内可能拥有生命的星球发射轨道探测器、登陆探测器、漫游车、以及飞掠探测器;第二条是对我们已经发现的遥远系外行星展开进一步分析,希望能找到一些生物特征、或至少找到一些与生物有关的蛛丝马迹。第三条则是寻找技术特征,比如由智慧文明创造的非自然信号。除此之外,还有些人甚至在寻找地球上已经出现外星人的证据,不过这类研究的科学价值颇受争议。
但如果我们强烈怀疑,宇宙中也许不仅存在外星人、甚至还有与人类体型相仿的外星人呢?我们能直接看见它们吗?于是有人提出了这么一个问题:“如果我们造一台足够大的望远镜,能否看见外星人在其它行星上走来走去呢?”
图为当时尚属全新的哈勃望远镜于1990年拍摄的第一张照片。没有了大气的干扰,再加上哈勃的大口径,其拍摄行星系的分辨率远胜任何地面望远镜。分辨率主要取决于光线波长与主镜直径的比例。
尽管存在障碍,但这种设想的确是有可能实现的。为此,我们首先要解决以下几个问题。
首先,对任何光学系统而言,最重要的一点、也是最基础的一点都是分辨率。要想看到大小为1米的物体,望远镜的分辨率最好也能达到1米、甚至能看到更小的东西才行。但在使用望远镜时,我们关注的并非观察对象的实际大小,而是角大小。这种角分辨率意味着,只有当物体与我们的距离处在某一范围内时,我们才能敏感地发现特定大小的物体,位于这一范围之外的物体则不行。
你也许听说过,望远镜的分辨率由自身大小决定,这在一定程度上是正确的。望远镜分辨率不仅取决于主镜直径,还取决于其观察的光线波长。说得更准确些,望远镜分辨率主要由波长与主镜直径的比例决定。例如,詹姆斯·韦伯空间望远镜口径为6.5米,可观测的光线最短波长约为550纳米,最长为28000纳米,因此它能实现的最大分辨率介于短波的0.03角秒到长波的1.4角秒之间。
这三张图片模拟的对象都是NGC 3603,分别来自哈勃望远镜(左图)、甚大望远镜(中间)、以及正在建设中的欧洲极大望远镜(左图)。图片清晰度的提高反映了望远镜分辨率的增加。
要回答上面的问题,我们先以低地轨道上最强大的望远镜——哈勃望远镜为例。以它在太空中的位置,哈勃望远镜能看到地球上的人类吗?
这张照片由宇航员凯伦·尼伯格于2013年从国际空间站上拍摄。要想在国际空间站的高度上看见地球上的人类,得使用哈勃那么大的望远镜才行。
请你先凭直觉猜一下:能,还是不能?
好了,接下来让我们揭晓答案。哈勃望远镜的主镜直径为2.4米,位于地表上方约547千米处。假设人的尺寸约为1米(从上往下看时,如果你处于直立状态,这个尺寸就会小一些;但如果你是躺在地上,这个尺寸就会大一些,所以我们取个平均值),转化成角尺寸,相当于0.000105°、或0.37角秒。哈勃望远镜只能在可见光波段达到这样的分辨率,所以如果我们的颜色为蓝、紫或紫外光,答案就是“能看见”;但如果我们的颜色偏红,答案就是“不一定”了。
利用可见光寻找人类再合适不过了,如果行星大气类似于地球、可见光穿透力很强,那就更加理想。短波光线具有分辨率更大的优势,但行星大气对伽马射线和X射线基本是不透明的。紫外光大部分也会被阻隔在外,如果有保护性臭氧层,阻挡效果会更加明显。即使我们将望远镜送入太空,也可以借助在地球大气中穿透力很强的这类光线搜索人类。
这张由尼尔·阿姆斯特朗拍摄的经典照片记录了巴斯·奥尔德林将美国国旗插上月球表面的情景。注意一下前景中的脚印。这些脚印从月球轨道上依然清晰可见,但地球上的望远镜分辨率则远远达不到要求。
要想用哈勃望远镜(或其它合适的仪器)搜索外星球上的“人类”,我们只需要弄清观测对象离我们有多远,就能知道要造多大的望远镜了。计算起来很简单:如果想以相同的分辨率、观察比哈勃望远镜范围上限远10倍的物体,只需要让主镜直径达到哈勃的10倍即可。接下来就让我们看看,要想寻找不同距离之外的外星人,究竟需要造多大的望远镜。
月球
先让我们看看离我们最近的邻居、地球的天然卫星——月球。就行星距离来说,月球离我们比太阳系中的任何天体都要近得多,甚至近到能让我们在月表登陆。月球围绕地球旋转的轨道为椭圆形,而不是正圆形,因此离地球时近时远。位于近地点时,地月距离为356500千米;远地点时则为406700千米。从低地轨道到月球,光线的平均传播距离约为38万千米。
图为欧洲极大望远镜全新的五镜光学系统。在进入望远镜内部的科学仪器前,光线首先经过直径39米的凹面主镜(M1)反射,然后到达两片直径4米的镜片,分别为凸面镜(M2)和凸面镜(M3)。最后两片镜片(M4和M5)构成了内置自适应光学系统,可以在最终的聚焦平面上形成清晰度极高的照片。主镜由798片镜片组成。
这就意味着,我们若想用哈勃观察地球时的分辨率观察月球,望远镜口径需达到1650米。造出这么巨大的望远镜堪称壮举,但也代价惊人。人类建造的最大的望远镜为欧洲极大望远镜,直径39米,目前还在南半球施工中。其主镜由789片六边形镜片组成,每片直径1.4米。要想造出1600米口径的望远镜,大约需要140万片这样的镜片。
金星与火星
假如我们不想将视线局限在月球上,还想在太阳系宜居带内的其它行星上寻找外星生命,那就是金星和火星了。尽管这两颗行星到地球的平均距离都超过了1亿公里,但在围绕太阳旋转的过程中,它们和地球之间的距离有时会大大缩短。金星距地球最近能达到3800万公里,火星则为6200万公里。
如何让视线穿透金星厚厚的云层是一项相当大的挑战。我们偶尔才能在可见光下看见金星表面,即使这样也需要云层刚好裂开一条缝才行。而火星就轻松多了,因为火星的云层和大气都很稀薄,穿透性很强。只要没有暴风雨,即使从很远的地方也能看见火星表面。
按这样的距离来算,要想看见金星表面的“人”,望远镜口径需达到161千米,火星则为263千米。前者相当于新泽西的面积,后者更是和整个西弗吉尼亚相当。
木星卫星
也许有朝一日,我们不仅能在太阳系中的岩质行星上发现生命,还能在气态巨行星的某颗卫星上发现。太阳系中离我们最近的气态巨行星是木星。人们普遍认为,木卫二和木卫三拥有适宜生命存活的特征。与到地球的距离相比,这些卫星到木星的距离几乎可以忽略不计。在最靠近地球时,木星离我们“只有”5.88亿公里。
科学家几乎可以肯定,木卫二冰封的表面之下有一片地下海洋,但并不清楚这层冰可能有多厚。艺术家绘制了两张木卫二冰壳的截面图。在两张图片中,热量都会以海底火山的形式从木卫二的岩质地幔中逃逸出去,然后由洋流带到地表。要想从地球上观察到木卫二表面与人类大小相当的物体,需要一台阿拉斯加那么大的望远镜才行。
这样一来,我们所需的望远镜口径为2500公里,面积大致与美国阿拉斯加州相当。这种规模的望远镜已经大到难以想象了,因为直径已经达到了月球的四分之三。但事实就是如此,要想从数亿公里之外拍到人类那么大的物体,就是需要这种天体尺度的望远镜。随着距离进一步增加,情况还会更严重。
通过这根刻度尺可以看出,有些天体离我们是多么遥远。各个行星、柯伊伯带、奥尔特云、以及离我们最近的恒星都在图上。要想保持相同的分辨率,距离每增加10倍,主镜直径也要增加10倍。
土星、天王星、海王星和更远的星球
土星到地球的距离约为木星的两倍,距地球最近时为12亿公里,望远镜口径需达到5000公里,几乎与土星最大的卫星、也是太阳系中第二大的卫星土卫六相当。
天王星到地球的距离又是土星的两倍,即使距离最近时也足有25.7亿公里。望远镜口径需达到10800公里,约为地球直径的85%。
海王星距地球最近时为42.98亿公里,望远镜口径需达到17800公里,相当于地球的1.5倍。
至于柯伊伯带上的天体,我们得打造一台直径达到地球两三倍的望远镜才行。要想看到奥尔特云,望远镜口径几乎要与太阳相当。更别提围绕其它恒星旋转的行星了。
波江座51b于2014年由双子座行星成像仪发现。它的质量为木星的两倍,是目前拍摄到的温度最低、质量最小的系外行星,到中央恒星的距离只有12个天文单位。要想拍摄到这颗行星上人类大小的物体,望远镜分辨率需达到目前最高水平的数十亿倍。
系外行星
除非我们决定将人类送到太阳系的其它星球上,否则在这些世界发现自然演化出的人类的概率几乎为零。但在太阳系以外的行星上,也许会存在与人类体型相仿的生物。
我们到最近的恒星的距离介于4光年至10光年之间,其中有些恒星的行星也许不仅宜居,甚至可能拥有类似人类大小、或者体型更大的生命形式。
要想看到几光年之外行星上1米长的物体,又需要多大的望远镜呢?
对于离我们最近的比邻星系中的行星,望远镜口径需与地球的公转轨道相当。对于天仓五周围的行星,望远镜直径要达到小行星带的直径才行。要想观察TRAPPIST-1系统中的行星,望远镜需要达到土星轨道大小。这些尺寸是不是听上去大得惊人?这大概就是为何从未有人提出直接通过望远镜观察、搜索外星生命的原因吧。
阿塔卡玛大型毫米波/亚毫米波阵列由一系列射电望远镜构成。该阵列的聚光能力相当于各个望远镜的总和,但分辨率则将望远镜之间的距离也算在内。
不过,虽然可能性很小,但我们依然有可能在技术上找到解决之道。要打造一台极大的望远镜,有两点最为关键:一,它必须能聚光,而且聚光能力必须与表面积相匹配;二,分辨率必须足够高,能够将不同的物体区分开来,而且分辨率需与主镜上能容纳的波长数量相匹配。
但如果我们观察的对象足够明亮,聚光能力也许就不那么重要了,只需保证分辨率够高即可。
对于超长波光线,有一种名叫特长基线干涉测量法的技巧,而这种技巧从理论上来说也可用于可见光波段。如果我们能在太阳系中建立起一个小型光学望远镜网络,虽然其聚光能力仅为这些望远镜的总和,但分辨率却可以将这些望远镜之间的距离也计算进去。
这固然是项极大的挑战,但若能设法实现,我们的成像细节度将达到前所未有的水平。尽管这注定是条漫长的征程,但要想知道外星生命究竟长什么样,这或许是我们最大的希望了。
推荐文章
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8