原文:Exercise 42: Stacks and Queues
到现在为止,你已经知道了大多数用于构建其它数据结构的数据结构。如果你拥有一些List、DArray、Hashmap 和 Tree,你就能用他们构造出大多数其它的任何结构。你碰到的其它任何结构要么可以用它们实现,要么是它们的变体。如果不是的话,它可能是外来的数据结构,你可能不需要它。
List
DArray
Hashmap
Tree
Stack和Queue是非常简单的数据结构,它们是List的变体。它们是List的弱化或者转换形式,因为你只需要在List的一端放置元素。对于Stack,你只能能够在一段压入和弹出元素。而对于Queue,你只能够在开头压入元素,并在末尾弹出(或者反过来)。
Stack
Queue
我能够只通过C预处理器和两个头文件来实现这两个数据结构。我的头文件只有21行的长度,并且实现了所有Stack和Queue的操作,不带有任何神奇的定义。
我将会向你展示单元测试,你需要实现头文件来让它们正常工作。你不能创建stack.c 或 queue.c实现文件来通过测试,只能使用stack.h 和 queue.h来使测试运行。
stack.c
queue.c
stack.h
queue.h
#include "minunit.h" #include <lcthw/stack.h> #include <assert.h> static Stack *stack = NULL; char *tests[] = {"test1 data", "test2 data", "test3 data"}; #define NUM_TESTS 3 char *test_create() { stack = Stack_create(); mu_assert(stack != NULL, "Failed to create stack."); return NULL; } char *test_destroy() { mu_assert(stack != NULL, "Failed to make stack #2"); Stack_destroy(stack); return NULL; } char *test_push_pop() { int i = 0; for(i = 0; i < NUM_TESTS; i++) { Stack_push(stack, tests[i]); mu_assert(Stack_peek(stack) == tests[i], "Wrong next value."); } mu_assert(Stack_count(stack) == NUM_TESTS, "Wrong count on push."); STACK_FOREACH(stack, cur) { debug("VAL: %s", (char *)cur->value); } for(i = NUM_TESTS - 1; i >= 0; i--) { char *val = Stack_pop(stack); mu_assert(val == tests[i], "Wrong value on pop."); } mu_assert(Stack_count(stack) == 0, "Wrong count after pop."); return NULL; } char *all_tests() { mu_suite_start(); mu_run_test(test_create); mu_run_test(test_push_pop); mu_run_test(test_destroy); return NULL; } RUN_TESTS(all_tests);
之后是queue_tests.c,几乎以相同的方式来使用Queue:
queue_tests.c
#include "minunit.h" #include <lcthw/queue.h> #include <assert.h> static Queue *queue = NULL; char *tests[] = {"test1 data", "test2 data", "test3 data"}; #define NUM_TESTS 3 char *test_create() { queue = Queue_create(); mu_assert(queue != NULL, "Failed to create queue."); return NULL; } char *test_destroy() { mu_assert(queue != NULL, "Failed to make queue #2"); Queue_destroy(queue); return NULL; } char *test_send_recv() { int i = 0; for(i = 0; i < NUM_TESTS; i++) { Queue_send(queue, tests[i]); mu_assert(Queue_peek(queue) == tests[0], "Wrong next value."); } mu_assert(Queue_count(queue) == NUM_TESTS, "Wrong count on send."); QUEUE_FOREACH(queue, cur) { debug("VAL: %s", (char *)cur->value); } for(i = 0; i < NUM_TESTS; i++) { char *val = Queue_recv(queue); mu_assert(val == tests[i], "Wrong value on recv."); } mu_assert(Queue_count(queue) == 0, "Wrong count after recv."); return NULL; } char *all_tests() { mu_suite_start(); mu_run_test(test_create); mu_run_test(test_send_recv); mu_run_test(test_destroy); return NULL; } RUN_TESTS(all_tests);
你应该在不修改测试文件的条件下,使单元测试能够运行,并且它应该能够通过valgrind而没有任何内存错误。下面是当我直接运行stack_tests时它的样子:
valgrind
stack_tests
$ ./tests/stack_tests DEBUG tests/stack_tests.c:60: ----- RUNNING: ./tests/stack_tests ---- RUNNING: ./tests/stack_tests DEBUG tests/stack_tests.c:53: ----- test_create DEBUG tests/stack_tests.c:54: ----- test_push_pop DEBUG tests/stack_tests.c:37: VAL: test3 data DEBUG tests/stack_tests.c:37: VAL: test2 data DEBUG tests/stack_tests.c:37: VAL: test1 data DEBUG tests/stack_tests.c:55: ----- test_destroy ALL TESTS PASSED Tests run: 3 $
queue_test的输出基本一样,所以我在这里就不展示了。
queue_test
你可以做到的唯一真正的改进,就是把所用的List换成DArray。Queue数据结构难以用DArray实现,因为它要同时处理两端的节点。
完全在头文件中来实现它们的缺点,是你并不能够轻易地对它做性能调优。你需要使用这种技巧,建立一种以特定的方式使用List的“协议”。做性能调优时,如果你优化了List,这两种数据结构都会有所改进。
STACK_FOREACH
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8