调试、诊断子线程最直接的方式就是像调试、诊断主线程一样,但是无论是动态开启还是静态开启,子线程都不可避免地需要内置一些相关的非业务代码,本文介绍另外一种对子线程代码无侵入的调试方式,另外也介绍一下通过子线程调试主线程的方式。
在Node.js启动子线程的时候,会初始化Inspector。
env_->InitializeInspector(std::move(inspector_parent_handle_));
在分析InitializeInspector之前,我们先看一下inspector_parenthandle。
std::unique_ptr<inspector::ParentInspectorHandle> inspector_parent_handle_;
inspector_parent_handle_是一个ParentInspectorHandle对象,这个对象是子线程和主线程通信的桥梁。我们看一下他的初始化逻辑(在主线程里执行)。
inspector_parent_handle_ = env->inspector_agent()->GetParentHandle(thread_id_, url);
调用agent的GetParentHandle获取一个ParentInspectorHandle对象。
std::unique_ptr<ParentInspectorHandle> Agent::GetParentHandle(int thread_id, const std::string& url) { return client_->getWorkerManager()->NewParentHandle(thread_id, url); }
内部其实是通过client_->getWorkerManager()对象的NewParentHandle方法获取ParentInspectorHandle对象,接下来我们看一下WorkerManager的NewParentHandle。
std::unique_ptr<ParentInspectorHandle> WorkerManager::NewParentHandle(int thread_id, const std::string& url) { bool wait = !delegates_waiting_on_start_.empty(); return std::make_unique<ParentInspectorHandle>(thread_id, url, thread_, wait); } ParentInspectorHandle::ParentInspectorHandle( int id, const std::string& url, std::shared_ptr<MainThreadHandle> parent_thread, bool wait_for_connect ) : id_(id), url_(url), parent_thread_(parent_thread), wait_(wait_for_connect) {}
最终的架构图如下入所示。 分析完ParentInspectorHandle后继续看一下env_->InitializeInspector(std::move(inspector_parenthandle))的逻辑(在子线程里执行)。
int Environment::InitializeInspector( std::unique_ptr<inspector::ParentInspectorHandle> parent_handle) { std::string inspector_path; inspector_path = parent_handle->url(); inspector_agent_->SetParentHandle(std::move(parent_handle)); inspector_agent_->Start(inspector_path, options_->debug_options(), inspector_host_port(), is_main_thread()); }
首先把ParentInspectorHandle对象保存到agent中,然后调用agent的Start方法。
bool Agent::Start(...) { // 新建client对象 client_ = std::make_shared<NodeInspectorClient>(parent_env_, is_main); // 调用agent中保存的ParentInspectorHandle对象的WorkerStarted parent_handle_->WorkerStarted(client_->getThreadHandle(), ...); }
Agent::Start创建了一个client对象,然后调用ParentInspectorHandle对象的WorkerStarted方法(刚才SetParentHandle的时候保存的),我们看一下这时候的架构图。 接着看parenthandle->WorkerStarted。
void ParentInspectorHandle::WorkerStarted( std::shared_ptr<MainThreadHandle> worker_thread, bool waiting) { std::unique_ptr<Request> request( new WorkerStartedRequest(id_, url_, worker_thread, waiting)); parent_thread_->Post(std::move(request)); }
WorkerStarted创建了一个WorkerStartedRequest请求,然后通过parentthread->Post提交,parent_thread_是MainThreadInterface对象。
void MainThreadInterface::Post(std::unique_ptr<Request> request) { Mutex::ScopedLock scoped_lock(requests_lock_); // 之前是空则需要唤醒消费者 bool needs_notify = requests_.empty(); // 消息入队 requests_.push_back(std::move(request)); if (needs_notify) { // 获取当前对象的一个弱引用 std::weak_ptr<MainThreadInterface>* interface_ptr = new std::weak_ptr<MainThreadInterface>(shared_from_this()); // 请求V8执行RequestInterrupt入参对应的回调 isolate_->RequestInterrupt([](v8::Isolate* isolate, void* opaque) { // 把执行时传入的参数转成MainThreadInterface std::unique_ptr<std::weak_ptr<MainThreadInterface>> interface_ptr { static_cast<std::weak_ptr<MainThreadInterface>*>(opaque) }; // 判断对象是否还有效,是则调用DispatchMessages if (auto iface = interface_ptr->lock()) iface->DispatchMessages(); }, static_cast<void*>(interface_ptr)); } // 唤醒消费者 incoming_message_cond_.Broadcast(scoped_lock); }
我们看看这时候的架构图。 接着看回调里执行MainThreadInterface对象DispatchMessages方法的逻辑。
void MainThreadInterface::DispatchMessages() { // 遍历请求队列 requests_.swap(dispatching_message_queue_); while (!dispatching_message_queue_.empty()) { MessageQueue::value_type task; std::swap(dispatching_message_queue_.front(), task); dispatching_message_queue_.pop_front(); // 执行任务函数 task->Call(this); } }
task是WorkerStartedRequest对象,看一下Call方法的代码。
void Call(MainThreadInterface* thread) override { auto manager = thread->inspector_agent()->GetWorkerManager(); manager->WorkerStarted(id_, info_, waiting_); }
接着调用agent的WorkerManager的WorkerStarted。
void WorkerManager::WorkerStarted(int session_id, const WorkerInfo& info, bool waiting) { children_.emplace(session_id, info); for (const auto& delegate : delegates_) { Report(delegate.second, info, waiting); } }
WorkerStarted记录了一个id和上下文,因为delegates_初始化的时候是空的,所以不会执行。至此,子线程Inspector初始化的逻辑就分析完了,结构图如下。 我们发现,和主线程不一样,主线程会启动一个WebSocket服务器接收客户端的连接请求,而子线程只是初始化了一些数据结构。下面我们看一下基于这些数据结构,主线程是如何动态开启调试子线程的。
我们可以以以下方式开启对子线程的调试。
const { Worker, workerData } = require('worker_threads'); const { Session } = require('inspector'); // 新建一个新的通信通道 const session = new Session(); session.connect(); // 创建子线程 const worker = new Worker('./httpServer.js', {workerData: {port: 80}}); // 子线程启动成功后开启调试子线程的能力 worker.on('online', () => { session.post("NodeWorker.enable", {waitForDebuggerOnStart: false}, (err) => { err && console.log("NodeWorker.enable", err); }); }); // 防止主线程退出 setInterval(() => {}, 100000);
我们先来分析一下connect函数的逻辑。
connect() { this[connectionSymbol] = new Connection((message) => this[onMessageSymbol](message)); }
新建了一个Connection对象并传入一个回调函数,该回调函数在收到消息时被回调。Connection是C++层导出的对象,由模版类JSBindingsConnection实现。
template <typename ConnectionType> class JSBindingsConnection {}
我们看看导出的路逻辑。
JSBindingsConnection<Connection>::Bind(env, target);
接着看Bind。
static void Bind(Environment* env, Local<Object> target) { // class_name是Connection Local<String> class_name = ConnectionType::GetClassName(env); Local<FunctionTemplate> tmpl = env->NewFunctionTemplate(JSBindingsConnection::New); tmpl->InstanceTemplate()->SetInternalFieldCount(1); tmpl->SetClassName(class_name); tmpl->Inherit(AsyncWrap::GetConstructorTemplate(env)); env->SetProtoMethod(tmpl, "dispatch", JSBindingsConnection::Dispatch); env->SetProtoMethod(tmpl, "disconnect", JSBindingsConnection::Disconnect); target->Set(env->context(), class_name, tmpl->GetFunction(env->context()).ToLocalChecked()) .ToChecked(); }
当我们在JS层执行new Connection的时候,就会执行JSBindingsConnection::New。
static void New(const FunctionCallbackInfo<Value>& info) { Environment* env = Environment::GetCurrent(info); Local<Function> callback = info[0].As<Function>(); new JSBindingsConnection(env, info.This(), callback); }
我们看看新建一个JSBindingsConnection对象时的逻辑。
JSBindingsConnection(Environment* env, Local<Object> wrap, Local<Function> callback) : AsyncWrap(env, wrap, PROVIDER_INSPECTORJSBINDING), callback_(env->isolate(), callback) { Agent* inspector = env->inspector_agent(); session_ = LocalConnection::Connect( inspector, std::make_unique<JSBindingsSessionDelegate>(env, this) ); } static std::unique_ptr<InspectorSession> Connect( Agent* inspector, std::unique_ptr<InspectorSessionDelegate> delegate ) { return inspector->Connect(std::move(delegate), false); }
最终是传入了一个JSBindingsSessionDelegate对象调用Agent的Connect方法。
std::unique_ptr<InspectorSession> Agent::Connect( std::unique_ptr<InspectorSessionDelegate> delegate, bool prevent_shutdown) { int session_id = client_->connectFrontend(std::move(delegate), prevent_shutdown); // JSBindingsConnection对象的session_字段指向的对象 return std::unique_ptr<InspectorSession>( new SameThreadInspectorSession(session_id, client_) ); }
Agent的Connect方法继续调用client_->connectFrontend。
int connectFrontend(std::unique_ptr<InspectorSessionDelegate> delegate, bool prevent_shutdown) { int session_id = next_session_id_++; channels_[session_id] = std::make_unique<ChannelImpl>(env_, client_, getWorkerManager(), std::move(delegate), getThreadHandle(), prevent_shutdown); return session_id; }
connectFrontend新建了一个ChannelImpl对象,在新建ChannelImpl时,会初始化子线程处理的逻辑。
explicit ChannelImpl(Environment* env, const std::unique_ptr<V8Inspector>& inspector, std::shared_ptr<WorkerManager> worker_manager, std::unique_ptr<InspectorSessionDelegate> delegate, std::shared_ptr<MainThreadHandle> main_thread_, bool prevent_shutdown) : delegate_(std::move(delegate)), prevent_shutdown_(prevent_shutdown), retaining_context_(false) { session_ = inspector->connect(CONTEXT_GROUP_ID, this, StringView()); // Node.js拓展命令的处理分发器 node_dispatcher_ = std::make_unique<protocol::UberDispatcher>(this); // trace相关 tracing_agent_ = std::make_unique<protocol::TracingAgent>(env, main_thread_); tracing_agent_->Wire(node_dispatcher_.get()); // 处理子线程相关 if (worker_manager) { worker_agent_ = std::make_unique<protocol::WorkerAgent>(worker_manager); worker_agent_->Wire(node_dispatcher_.get()); } // 处理runtime runtime_agent_ = std::make_unique<protocol::RuntimeAgent>(); runtime_agent_->Wire(node_dispatcher_.get()); }
我们这里只关注处理子线程相关的逻辑。看一下 workeragent->Wire。
void WorkerAgent::Wire(UberDispatcher* dispatcher) { frontend_.reset(new NodeWorker::Frontend(dispatcher->channel())); NodeWorker::Dispatcher::wire(dispatcher, this); auto manager = manager_.lock(); workers_ = std::make_shared<NodeWorkers>(frontend_, manager->MainThread()); }
这时候的架构图如下 接着看一下NodeWorker::Dispatcher::wire(dispatcher, this)的逻辑。
void Dispatcher::wire(UberDispatcher* uber, Backend* backend) { std::unique_ptr<DispatcherImpl> dispatcher(new DispatcherImpl(uber->channel(), backend)); uber->setupRedirects(dispatcher->redirects()); uber->registerBackend("NodeWorker", std::move(dispatcher)); }
首先新建了一个DispatcherImpl对象。
DispatcherImpl(FrontendChannel* frontendChannel, Backend* backend) : DispatcherBase(frontendChannel) , m_backend(backend) { m_dispatchMap["NodeWorker.sendMessageToWorker"] = &DispatcherImpl::sendMessageToWorker; m_dispatchMap["NodeWorker.enable"] = &DispatcherImpl::enable; m_dispatchMap["NodeWorker.disable"] = &DispatcherImpl::disable; m_dispatchMap["NodeWorker.detach"] = &DispatcherImpl::detach; }
除了初始化一些字段,另外了一个kv数据结构,这个是一个路由配置,后面我们会看到它的作用。新建完DispatcherImpl后又调用了uber->registerBackend("NodeWorker", std::move(dispatcher))注册该对象。
void UberDispatcher::registerBackend(const String& name, std::unique_ptr<protocol::DispatcherBase> dispatcher) { m_dispatchers[name] = std::move(dispatcher); }
这时候的架构图如下。 我们看到这里其实是建立了一个路由体系,后面收到命令时就会根据这些路由配置进行转发,类似Node.js Express框架路由机制。这时候可以通过session的post给主线程发送NodeWorker.enable命令来开启子线程的调试。我们分析这个过程。
post(method, params, callback) { // 忽略参数处理 // 保存请求对应的回调 if (callback) { this[messageCallbacksSymbol].set(id, callback); } // 调用C++的dispatch this[connectionSymbol].dispatch(JSONStringify(message)); }
this[connectionSymbol]对应的是JSBindingsConnection对象。
static void Dispatch(const FunctionCallbackInfo<Value>& info) { Environment* env = Environment::GetCurrent(info); JSBindingsConnection* session; ASSIGN_OR_RETURN_UNWRAP(&session, info.Holder()); if (session->session_) { session->session_->Dispatch( ToProtocolString(env->isolate(), info[0])->string()); } }
session_是一个SameThreadInspectorSession对象。
void SameThreadInspectorSession::Dispatch( const v8_inspector::StringView& message) { auto client = client_.lock(); client->dispatchMessageFromFrontend(session_id_, message); } void dispatchMessageFromFrontend(int session_id, const StringView& message) { channels_[session_id]->dispatchProtocolMessage(message); }
最终调用了ChannelImpl的dispatchProtocolMessage。
void dispatchProtocolMessage(const StringView& message) { std::string raw_message = protocol::StringUtil::StringViewToUtf8(message); std::unique_ptr<protocol::DictionaryValue> value = protocol::DictionaryValue::cast(protocol::StringUtil::parseMessage( raw_message, false)); int call_id; std::string method; // 解析命令 node_dispatcher_->parseCommand(value.get(), &call_id, &method); // 判断命令是V8内置命令还是Node.js拓展的命令 if (v8_inspector::V8InspectorSession::canDispatchMethod( Utf8ToStringView(method)->string())) { session_->dispatchProtocolMessage(message); } else { node_dispatcher_->dispatch(call_id, method, std::move(value), raw_message); } }
因为NodeWorker.enable是Node.js拓展的命令,所以会走到else里面的逻辑。根据路由配置找到该命令对应的处理逻辑(NodeWorker.enable以.切分,对应两级路由)。
void UberDispatcher::dispatch(int callId, const String& in_method, std::unique_ptr<Value> parsedMessage, const ProtocolMessage& rawMessage) { // 找到一级路由配置 protocol::DispatcherBase* dispatcher = findDispatcher(method); std::unique_ptr<protocol::DictionaryValue> messageObject = DictionaryValue::cast(std::move(parsedMessage)); // 交给一级路由处理器处理 dispatcher->dispatch(callId, method, rawMessage, std::move(messageObject)); }
NodeWorker.enable对应的路由处理器代码如下
void DispatcherImpl::dispatch(int callId, const String& method, const ProtocolMessage& message, std::unique_ptr<protocol::DictionaryValue> messageObject) { // 查找二级路由 std::unordered_map<String, CallHandler>::iterator it = m_dispatchMap.find(method); protocol::ErrorSupport errors; // 找到处理函数 (this->*(it->second))(callId, method, message, std::move(messageObject), &errors); }
dispatch继续寻找命令对应的处理函数,最终找到NodeWorker.enable命令的处理函数为DispatcherImpl::enable。
void DispatcherImpl::enable(...) { std::unique_ptr<DispatcherBase::WeakPtr> weak = weakPtr(); DispatchResponse response = m_backend->enable(...); // 返回响应给命令(类似请求/响应模式) weak->get()->sendResponse(callId, response); }
根据架构图可以知道m_backend是WorkerAgent对象。
DispatchResponse WorkerAgent::enable(bool waitForDebuggerOnStart) { auto manager = manager_.lock(); std::unique_ptr<AgentWorkerInspectorDelegate> delegate(new AgentWorkerInspectorDelegate(workers_)); event_handle_ = manager->SetAutoAttach(std::move(delegate)); return DispatchResponse::OK(); }
继续调用WorkerManager的SetAutoAttach方法。
std::unique_ptr<WorkerManagerEventHandle> WorkerManager::SetAutoAttach( std::unique_ptr<WorkerDelegate> attach_delegate) { int id = ++next_delegate_id_; // 保存delegate delegates_[id] = std::move(attach_delegate); const auto& delegate = delegates_[id]; // 通知子线程 for (const auto& worker : children_) { Report(delegate, worker.second, false); } ... }
SetAutoAttach遍历子线程。
void Report(const std::unique_ptr<WorkerDelegate>& delegate, const WorkerInfo& info, bool waiting) { if (info.worker_thread) delegate->WorkerCreated(info.title, info.url, waiting, info.worker_thread); }
info是一个WorkerInfo对象,该对象是子线程初始化和主线程建立关系的数据结构。delegate是AgentWorkerInspectorDelegate对象。
void WorkerCreated(const std::string& title, const std::string& url, bool waiting, std::shared_ptr<MainThreadHandle> target) override { workers_->WorkerCreated(title, url, waiting, target); }
workers_是一个NodeWorkers对象。
void NodeWorkers::WorkerCreated(const std::string& title, const std::string& url, bool waiting, std::shared_ptr<MainThreadHandle> target) { auto frontend = frontend_.lock(); std::string id = std::to_string(++next_target_id_); // 处理数据通信的delegate auto delegate = thread_->MakeDelegateThreadSafe( std::unique_ptr<InspectorSessionDelegate>( new ParentInspectorSessionDelegate(id, shared_from_this()) ) ); // 建立和子线程V8 Inspector的通信通道 sessions_[id] = target->Connect(std::move(delegate), true); frontend->attachedToWorker(id, WorkerInfo(id, title, url), waiting); }
WorkerCreated建立了一条和子线程通信的通道,然后通知命令的发送方通道建立成功。这时候架构图如下。 接着看attachedToWorker。
void Frontend::attachedToWorker(const String& sessionId, std::unique_ptr<protocol::NodeWorker::WorkerInfo> workerInfo, bool waitingForDebugger) { std::unique_ptr<AttachedToWorkerNotification> messageData = AttachedToWorkerNotification::create() .setSessionId(sessionId) .setWorkerInfo(std::move(workerInfo)) .setWaitingForDebugger(waitingForDebugger) .build(); // 触发NodeWorker.attachedToWorker m_frontendChannel->sendProtocolNotification(InternalResponse::createNotification("NodeWorker.attachedToWorker", std::move(messageData))); }
继续看sendProtocolNotification
void sendProtocolNotification( std::unique_ptr<Serializable> message) override { sendMessageToFrontend(message->serializeToJSON()); } void sendMessageToFrontend(const StringView& message) { delegate_->SendMessageToFrontend(message); }
这里的delegate_是一个JSBindingsSessionDelegate对象。
void SendMessageToFrontend(const v8_inspector::StringView& message) override { Isolate* isolate = env_->isolate(); HandleScope handle_scope(isolate); Context::Scope context_scope(env_->context()); MaybeLocal<String> v8string = String::NewFromTwoByte(isolate, message.characters16(), NewStringType::kNormal, message.length() ); Local<Value> argument = v8string.ToLocalChecked().As<Value>(); // 收到消息执行回调 connection_->OnMessage(argument); } // 执行JS层回调 void OnMessage(Local<Value> value) { MakeCallback(callback_.Get(env()->isolate()), 1, &value); }
JS层回调逻辑如下。
[onMessageSymbol](message) { const parsed = JSONParse(message); // 收到的消息如果是某个请求的响应,则有个id字段记录了请求对应的id,否则则触发事件 if (parsed.id) { const callback = this[messageCallbacksSymbol].get(parsed.id); this[messageCallbacksSymbol].delete(parsed.id); if (callback) { callback(null, parsed.result); } } else { this.emit(parsed.method, parsed); this.emit('inspectorNotification', parsed); } }
主线程拿到Worker Session对一个的id,后续就可以通过命令NodeWorker.sendMessageToWorker加上该id和子线程通信。大致原理如下,主线程通过自己的channel和子线程的channel进行通信,从而达到控制子线程的目的。 我们分析一下NodeWorker.sendMessageToWorker命令的逻辑,对应处理函数为DispatcherImpl::sendMessageToWorker。
void DispatcherImpl::sendMessageToWorker(...) { std::unique_ptr<DispatcherBase::WeakPtr> weak = weakPtr(); DispatchResponse response = m_backend->sendMessageToWorker(in_message, in_sessionId); // 响应 weak->get()->sendResponse(callId, response); return; }
继续分析m_backend->sendMessageToWorker。
DispatchResponse WorkerAgent::sendMessageToWorker(const String& message, const String& sessionId) { workers_->Receive(sessionId, message); return DispatchResponse::OK(); } void NodeWorkers::Receive(const std::string& id, const std::string& message) { auto it = sessions_.find(id); it->second->Dispatch(Utf8ToStringView(message)->string()); }
sessions_对应的是和子线程的通信的数据结构CrossThreadInspectorSession。看一下该对象的Dispatch方法。
void Dispatch(const StringView& message) override { state_.Call(&MainThreadSessionState::Dispatch, StringBuffer::create(message)); }
再次调了MainThreadSessionState::Dispatch
void Dispatch(std::unique_ptr<StringBuffer> message) { session_->Dispatch(message->string()); }
session_是SameThreadInspectorSession对象。继续看它的Dispatch方法。
通过层层调用,最终拿到了一个合子线程通信的channel,dispatchProtocolMessage方法刚才已经分析过,该方法会根据命令做不同的处理,因为我们这里发送的是V8内置的命令,所以会交给V8 Inspector处理。当V8 Inspector处理完后,会通过ChannelImpl的sendResponse返回结果。
void sendResponse( int callId, std::unique_ptr<v8_inspector::StringBuffer> message) override { sendMessageToFrontend(message->string()); } void sendMessageToFrontend(const StringView& message) { delegate_->SendMessageToFrontend(message); }
这里的delegate_是ParentInspectorSessionDelegate对象。
void SendMessageToFrontend(const v8_inspector::StringView& msg) override { std::string message = protocol::StringUtil::StringViewToUtf8(msg); workers_->Send(id_, message); } void NodeWorkers::Send(const std::string& id, const std::string& message) { auto frontend = frontend_.lock(); if (frontend) frontend->receivedMessageFromWorker(id, message); } void Frontend::receivedMessageFromWorker(const String& sessionId, const String& message) { std::unique_ptr<ReceivedMessageFromWorkerNotification> messageData = ReceivedMessageFromWorkerNotification::create() .setSessionId(sessionId) .setMessage(message) .build(); // 触发NodeWorker.receivedMessageFromWorker m_frontendChannel->sendProtocolNotification(InternalResponse::createNotification("NodeWorker.receivedMessageFromWorker", std::move(messageData))); }
m_frontendChannel是主线程的ChannelImpl对象。
delegate_是C++层传入的JSBindingsSessionDelegate对象。最终通过JSBindingsSessionDelegate对象回调JS层,之前已经分析过就不再赘述。至此,主线程就具备了控制子线程的能力,但是控制方式有很多种。
通过下面代码收集子线程的CPU Profile信息。
const { Worker, workerData } = require('worker_threads'); const { Session } = require('inspector'); const session = new Session(); session.connect(); let id = 1; function post(sessionId, method, params, callback) { session.post('NodeWorker.sendMessageToWorker', { sessionId, message: JSON.stringify({ id: id++, method, params }) }, callback); } session.on('NodeWorker.attachedToWorker', (data) => { post(data.params.sessionId, 'Profiler.enable'); post(data.params.sessionId, 'Profiler.start'); // 收集一段时间后提交停止收集命令 setTimeout(() => { post(data.params.sessionId, 'Profiler.stop'); }, 10000) }); session.on('NodeWorker.receivedMessageFromWorker', ({ params: { message }}) => { const data = JSON.parse(message); console.log(data); }); const worker = new Worker('./httpServer.js', {workerData: {port: 80}}); worker.on('online', () => { session.post("NodeWorker.enable",{waitForDebuggerOnStart: false}, (err) => { console.log(err, "NodeWorker.enable");}); }); setInterval(() => {}, 100000);
通过这种方式可以通过命令控制子线程的调试和数据收集。
可以通过执行脚本开启子线程的WebSocket服务,像调试主线程一样。
const { Worker, workerData } = require('worker_threads'); const { Session } = require('inspector'); const session = new Session(); session.connect(); let workerSessionId; let id = 1; function post(method, params) { session.post('NodeWorker.sendMessageToWorker', { sessionId: workerSessionId, message: JSON.stringify({ id: id++, method, params }) }); } session.on('NodeWorker.receivedMessageFromWorker', ({ params: { message }}) => { const data = JSON.parse(message); console.log(data); }); session.on('NodeWorker.attachedToWorker', (data) => { workerSessionId = data.params.sessionId; post("Runtime.evaluate", { includeCommandLineAPI: true, expression: `const inspector = process.binding('inspector'); inspector.open(); inspector.url(); ` } ); }); const worker = new Worker('./httpServer.js', {workerData: {port: 80}}); worker.on('online', () => { session.post("NodeWorker.enable",{waitForDebuggerOnStart: false}, (err) => { err && console.log("NodeWorker.enable", err);}); }); setInterval(() => {}, 100000);
执行上面的代码就拿到以下输出
{ id: 1, result: { result: { type: 'string', value: 'ws://127.0.0.1:9229/c0ca16c8-55aa-4651-9776-fca1b27fc718' } } }
通过该地址,客户端就可以对子线程进行调试了。上面代码里使用process.binding而不是require加载inspector,因为刚才通过NodeWorker.enable命令为子线程创建了一个到子线程Inspector的channel,而JS模块里判断如果channel非空则报错Inspector已经打开。所以这里需要绕过这个限制,直接加载C++模块开启WebSocket服务器。
不仅可以通过主线程调试子线程,还可以通过子线程调试主线程。Node.js在子线程暴露了connectToMainThread方法连接到主线程的Inspector(只能在work_threads中使用),实现的原理和之前分析的类似,主要是子线程连接到主线程的V8 Inspector,通过和该Inspector完成对主线程的控制。看下面一个例子。 主线程代码
const { Worker, workerData } = require('worker_threads'); const http = require('http'); const worker = new Worker('./worker.js', {workerData: {port: 80}}); http.createServer((_, res) => { res.end('main'); }).listen(8000);
worker.js代码如下
const fs = require('fs'); const { workerData: { port } } = require('worker_threads'); const { Session } = require('inspector'); const session = new Session(); session.connectToMainThread(); session.post('Profiler.enable'); session.post('Profiler.start'); setTimeout(() => { session.post('Profiler.stop', (err, data) => { if (data.profile) { fs.writeFileSync('./profile.cpuprofile', JSON.stringify(data.profile)); } }); }, 5000)
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8