前言:虽然Async hooks至此还是实验性API,但是他的确可以解决应用中的一些问题,比如日志和调用栈跟踪。本文从应用和原理方便介绍一下Node.js的Async hooks。
在Node.js的env对象中有一个AsyncHooks对象,负责Node.js进程中async_hooks的管理。我们看一下定义。
class AsyncHooks : public MemoryRetainer { public: enum Fields { // 五种钩子 kInit, kBefore, kAfter, kDestroy, kPromiseResolve, // 钩子总数 kTotals, // async_hooks开启的个数 kCheck, // 记录栈的top指针 kStackLength, // 数组大小 kFieldsCount, }; enum UidFields { kExecutionAsyncId, kTriggerAsyncId, // 当前async id的值 kAsyncIdCounter, kDefaultTriggerAsyncId, kUidFieldsCount, }; private: inline AsyncHooks(); // 异步资源的类型 std::array<v8::Eternal<v8::String>, AsyncWrap::PROVIDERS_LENGTH> providers_; // 栈 AliasedFloat64Array async_ids_stack_; // 整形数组,每个元素值的意义和Fields对应 AliasedUint32Array fields_; // 整形数组,每个元素值的意义和UidFields对应 AliasedFloat64Array async_id_fields_; };
结构图如下 接下来看一下env的AsyncHooks对象提供了哪些API,这些API是上层的基础。
我们看一下env对象中获取AsyncHooks对象对应字段的API。
// 获取对应的字段 inline AliasedUint32Array& AsyncHooks::fields() { return fields_; } inline AliasedFloat64Array& AsyncHooks::async_id_fields() { return async_id_fields_; } inline AliasedFloat64Array& AsyncHooks::async_ids_stack() { return async_ids_stack_; } // 获取资源类型 inline v8::Local<v8::String> AsyncHooks::provider_string(int idx) { return providers_[idx].Get(env()->isolate()); } // 新建资源的时候,获取新的async id inline double Environment::new_async_id() { async_hooks()->async_id_fields()[AsyncHooks::kAsyncIdCounter] += 1; return async_hooks()->async_id_fields()[AsyncHooks::kAsyncIdCounter]; } // 获取当前async id inline double Environment::execution_async_id() { return async_hooks()->async_id_fields()[AsyncHooks::kExecutionAsyncId]; } // 获取当前trigger async id inline double Environment::trigger_async_id() { return async_hooks()->async_id_fields()[AsyncHooks::kTriggerAsyncId]; } // 获取默认的trigger async id,如果没有设置,则获取当前的async id inline double Environment::get_default_trigger_async_id() { double default_trigger_async_id = async_hooks()->async_id_fields()[AsyncHooks::kDefaultTriggerAsyncId]; // If defaultTriggerAsyncId isn't set, use the executionAsyncId if (default_trigger_async_id < 0) default_trigger_async_id = execution_async_id(); return default_trigger_async_id; }
inline void AsyncHooks::push_async_ids(double async_id, double trigger_async_id) { // 获取当前栈顶指针 uint32_t offset = fields_[kStackLength]; // 不够则扩容 if (offset * 2 >= async_ids_stack_.Length()) grow_async_ids_stack(); // 把旧的上下文压栈 async_ids_stack_[2 * offset] = async_id_fields_[kExecutionAsyncId]; async_ids_stack_[2 * offset + 1] = async_id_fields_[kTriggerAsyncId]; // 栈指针加一 fields_[kStackLength] += 1; // 记录当前上下文 async_id_fields_[kExecutionAsyncId] = async_id; async_id_fields_[kTriggerAsyncId] = trigger_async_id; } // 和上面的逻辑相反 inline bool AsyncHooks::pop_async_id(double async_id) { if (fields_[kStackLength] == 0) return false; uint32_t offset = fields_[kStackLength] - 1; async_id_fields_[kExecutionAsyncId] = async_ids_stack_[2 * offset]; async_id_fields_[kTriggerAsyncId] = async_ids_stack_[2 * offset + 1]; fields_[kStackLength] = offset; return fields_[kStackLength] > 0; }
接着看一下异步资源的基类AsyncWrap。所有依赖于C、C++层实现的资源(比如TCP、UDP)都会继承AsyncWrap。看看该类的定义。
class AsyncWrap : public BaseObject { private: ProviderType provider_type_ = PROVIDER_NONE; double async_id_ = kInvalidAsyncId; double trigger_async_id_; };
我们看到每个AsyncWrap对象都有asyncid、trigger_async_id_和provider_type_属性,这正是在init回调里拿到的数据。我们看看AsyncWrap的构造函数。接下来看一下新建一个资源(AsyncWrap)时的逻辑。
AsyncWrap::AsyncWrap(Environment* env, Local<Object> object, ProviderType provider, double execution_async_id, bool silent) : AsyncWrap(env, object) { // 资源类型 provider_type_ = provider; AsyncReset(execution_async_id, silent); } void AsyncWrap::AsyncReset(Local<Object> resource, double execution_async_id, bool silent) { // 获取一个新的async id,execution_async_id默认是kInvalidAsyncId async_id_ = execution_async_id == kInvalidAsyncId ? env()->new_async_id() : execution_async_id; // 获取trigger async id trigger_async_id_ = env()->get_default_trigger_async_id(); // 执行init钩子 EmitAsyncInit(env(), resource, env()->async_hooks()->provider_string(provider_type()), async_id_, trigger_async_id_); }
接着看EmitAsyncInit
void AsyncWrap::EmitAsyncInit(Environment* env, Local<Object> object, Local<String> type, double async_id, double trigger_async_id) { AsyncHooks* async_hooks = env->async_hooks(); HandleScope scope(env->isolate()); Local<Function> init_fn = env->async_hooks_init_function(); Local<Value> argv[] = { Number::New(env->isolate(), async_id), type, Number::New(env->isolate(), trigger_async_id), object, }; TryCatchScope try_catch(env, TryCatchScope::CatchMode::kFatal); // 执行init回调 USE(init_fn->Call(env->context(), object, arraysize(argv), argv)); }
那么env->async_hooks_init_function()的值是什么呢?这是在Node.js初始化时设置的。
const { nativeHooks } = require('internal/async_hooks'); internalBinding('async_wrap').setupHooks(nativeHooks);
SetupHooks的实现如下
static void SetupHooks(const FunctionCallbackInfo<Value>& args) { Environment* env = Environment::GetCurrent(args); Local<Object> fn_obj = args[0].As<Object>(); #define SET_HOOK_FN(name) \ do { \ Local<Value> v = \ fn_obj->Get(env->context(), \ FIXED_ONE_BYTE_STRING(env->isolate(), #name)) \ .ToLocalChecked(); \ CHECK(v->IsFunction()); \ env->set_async_hooks_##name##_function(v.As<Function>()); \ } while (0) // 保存到env中 SET_HOOK_FN(init); SET_HOOK_FN(before); SET_HOOK_FN(after); SET_HOOK_FN(destroy); SET_HOOK_FN(promise_resolve); #undef SET_HOOK_FN }
nativeHooks的实现如下
nativeHooks: { init: emitInitNative, before: emitBeforeNative, after: emitAfterNative, destroy: emitDestroyNative, promise_resolve: emitPromiseResolveNative }
这些Hooks会执行对应的回调,比如emitInitNative
function emitInitNative(asyncId, type, triggerAsyncId, resource) { for (var i = 0; i < active_hooks.array.length; i++) { if (typeof active_hooks.array[i][init_symbol] === 'function') { active_hooks.array[i][init_symbol]( asyncId, type, triggerAsyncId, resource ); } } }
active_hooks.array的值就是我们在业务代码里设置的钩子,每次调研createHooks的时候就对应数组的一个元素。
当业务代码异步请求底层API,并且底层满足条件时,就会执行上层的回调,比如监听一个socket时,有连接到来。Node.js就会调用MakeCallback函数执行回调。
MaybeLocal<Value> AsyncWrap::MakeCallback(const Local<Function> cb, int argc, Local<Value>* argv) { // 当前AsyncWrap对象对应的执行上下文 ProviderType provider = provider_type(); async_context context { get_async_id(), get_trigger_async_id() }; MaybeLocal<Value> ret = InternalMakeCallback(env(), object(), cb, argc, argv, context); return ret; }
MakeCallback中会调用InternalMakeCallback。
MaybeLocal<Value> InternalMakeCallback(Environment* env, Local<Object> recv, const Local<Function> callback, int argc, Local<Value> argv[], async_context asyncContext) { // 新建一个scope InternalCallbackScope scope(env, recv, asyncContext); // 执行回调 callback->Call(env->context(), recv, argc, argv); // 关闭scope scope.Close(); }
我们看看新建和关闭scope都做了什么事情。
InternalCallbackScope::InternalCallbackScope(Environment* env, Local<Object> object, const async_context& asyncContext, int flags) : env_(env), async_context_(asyncContext), object_(object), skip_hooks_(flags & kSkipAsyncHooks), skip_task_queues_(flags & kSkipTaskQueues) { // v14版本中,是先触发before再push上下文,顺序是不对的,v16已经改过来。 // 当前执行上下文入栈 env->async_hooks()->push_async_ids(async_context_.async_id, async_context_.trigger_async_id); // 触发before钩子 if (asyncContext.async_id != 0 && !skip_hooks_) { AsyncWrap::EmitBefore(env, asyncContext.async_id); } pushed_ids_ = true; }
在scope里会把当前AsyncWrap对象的执行上下文作为当前执行上下文,并且触发before钩子,然后执行业务回调,所以我们在回调里获取当前执行上下文时就拿到了AsyncWrap对应的值( 调用executionAsyncId),接着看Close
void InternalCallbackScope::Close() { // 执行 if (pushed_ids_) env_->async_hooks()->pop_async_id(async_context_.async_id); if (async_context_.async_id != 0 && !skip_hooks_) { AsyncWrap::EmitAfter(env_, async_context_.async_id); } }
Close在执行回调后被调用,主要是恢复当前执行上下文并且触发after钩子。
并不是所有的异步资源都是底层实现的,比如定时器,tick也被定义为异步资源,因为他们都是和回调相关。这种异步资源是在JS层实现的,这里只分析Timeout。
我们看一下执行setTimeout时的核心逻辑。
function setTimeout(callback, after, arg1, arg2, arg3) { const timeout = new Timeout(callback, after, args, false, true); return timeout; } function Timeout(callback, after, args, isRepeat, isRefed) { initAsyncResource(this, 'Timeout'); } function initAsyncResource(resource, type) { // 获取新的async id const asyncId = resource[async_id_symbol] = newAsyncId(); const triggerAsyncId = resource[trigger_async_id_symbol] = getDefaultTriggerAsyncId(); // 是否设置了init钩子,是则触发回调 if (initHooksExist()) emitInit(asyncId, type, triggerAsyncId, resource); }
执行setTimeout时,Node.js会创建一个Timeout对象,设置async_hooks相关的上下文并记录到Timeout对象中。然后触发init钩子。
function emitInitScript(asyncId, type, triggerAsyncId, resource) { emitInitNative(asyncId, type, triggerAsyncId, resource); }
以上代码会执行每个async_hooks对象的init回调(通常我们只有一个async_hooks对象)。
当定时器到期时,会执行回调,我们看看相关的逻辑。
// 触发before钩子 emitBefore(asyncId, timer[trigger_async_id_symbol]); // 执行回调 timer._onTimeout(); // 触发after回调 emitAfter(asyncId);
我们看到执行超时回调的前后会触发对应的钩子。
function emitBeforeScript(asyncId, triggerAsyncId) { // 和底层的push_async_ids逻辑一样 pushAsyncIds(asyncId, triggerAsyncId); // 如果有回调则执行 if (async_hook_fields[kBefore] > 0) emitBeforeNative(asyncId); } function emitAfterScript(asyncId) { // 设置了after回调则emit if (async_hook_fields[kAfter] > 0) emitAfterNative(asyncId); // 和底层的pop_async_ids逻辑一样 popAsyncIds(asyncId); }
JS层的实现和底层是保持一致的。如果我们在setTimeout回调里新建一个资源,比如再次执行setTimeout,这时候trigger async id就是第一个setTimeout对应的async id,所以就连起来了,后面我们会看到具体的例子。
Node.js为了避免过多通过参数传递的方式传递async id,就设计了DefaultTriggerAsyncIdScope。DefaultTriggerAsyncIdScope的作用类似在多个函数外维护一个变量,多个函数都可以通过DefaultTriggerAsyncIdScope获得trigger async id,而不需要通过层层传递的方式,他的实现非常简单。
class DefaultTriggerAsyncIdScope { private: AsyncHooks* async_hooks_; double old_default_trigger_async_id_; }; inline AsyncHooks::DefaultTriggerAsyncIdScope ::DefaultTriggerAsyncIdScope( Environment* env, double default_trigger_async_id) : async_hooks_(env->async_hooks()) { // 记录旧的id,设置新的id old_default_trigger_async_id_ = async_hooks_->async_id_fields()[AsyncHooks::kDefaultTriggerAsyncId]; async_hooks_->async_id_fields()[AsyncHooks::kDefaultTriggerAsyncId] = default_trigger_async_id; } // 恢复 inline AsyncHooks::DefaultTriggerAsyncIdScope ::~DefaultTriggerAsyncIdScope() { async_hooks_->async_id_fields()[AsyncHooks::kDefaultTriggerAsyncId] = old_default_trigger_async_id_; }
DefaultTriggerAsyncIdScope主要是记录旧的id,然后把新的id设置到env中,当其他函数调用get_default_trigger_async_id时就可以获取设置的async id。同样JS层也实现了类似的API。
function defaultTriggerAsyncIdScope(triggerAsyncId, block, ...args) { const oldDefaultTriggerAsyncId = async_id_fields[kDefaultTriggerAsyncId]; async_id_fields[kDefaultTriggerAsyncId] = triggerAsyncId; try { return block(...args); } finally { async_id_fields[kDefaultTriggerAsyncId] = oldDefaultTriggerAsyncId; } }
在执行block函数时,可以获取到设置的值,而不需要传递,执行完block后恢复。我们看看如何使用。下面摘自net模块的代码。
// 获取handle里的async id this[async_id_symbol] = getNewAsyncId(this._handle); defaultTriggerAsyncIdScope(this[async_id_symbol], process.nextTick, emitListeningNT, this);
我们看一下这里具体的情况。在defaultTriggerAsyncIdScope中会以emitListeningNT为入参执行process.nextTick。我们看看nextTick的实现。
function nextTick(callback) { // 获取新的async id const asyncId = newAsyncId(); // 获取默认的trigger async id,即刚才设置的 const triggerAsyncId = getDefaultTriggerAsyncId(); const tickObject = { [async_id_symbol]: asyncId, [trigger_async_id_symbol]: triggerAsyncId, callback, args }; if (initHooksExist()) // 创建了新的资源,触发init钩子 emitInit(asyncId, 'TickObject', triggerAsyncId, tickObject); queue.push(tickObject); }
我们看到在nextTick中通过getDefaultTriggerAsyncId拿到了trigger async id。
function getDefaultTriggerAsyncId() { const defaultTriggerAsyncId = async_id_fields[kDefaultTriggerAsyncId]; if (defaultTriggerAsyncId < 0) return async_id_fields[kExecutionAsyncId]; return defaultTriggerAsyncId; }
getDefaultTriggerAsyncId返回的就是刚才通过defaultTriggerAsyncIdScope设置的async id。所以在触发TickObject的init钩子时用户就可以拿到对应的id。不过更重要的时,在异步执行nextTick的任务时,还可以拿到原始的trigger async id。因为该id记录在tickObject中。我们看看执行tick任务时的逻辑。
function processTicksAndRejections() { let tock; do { while (tock = queue.shift()) { // 拿到对应的async 上下文 const asyncId = tock[async_id_symbol]; emitBefore(asyncId, tock[trigger_async_id_symbol]); try { const callback = tock.callback; callback(); } finally { if (destroyHooksExist()) emitDestroy(asyncId); } emitAfter(asyncId); } } while (!queue.isEmpty() || processPromiseRejections()); }
资源销毁的时候也会触发对应的钩子,不过不同的是这个钩子是异步触发的。无论是JS还是好C++层触发销毁钩子的时候,逻辑都是一致的。
void AsyncWrap::EmitDestroy(Environment* env, double async_id) { // 之前为空则设置回调 if (env->destroy_async_id_list()->empty()) { env->SetUnrefImmediate(&DestroyAsyncIdsCallback); } // async id入队 env->destroy_async_id_list()->push_back(async_id); } template <typename Fn> void Environment::SetUnrefImmediate(Fn&& cb) { CreateImmediate(std::move(cb), false); } template <typename Fn> void Environment::CreateImmediate(Fn&& cb, bool ref) { auto callback = std::make_unique<NativeImmediateCallbackImpl<Fn>>( std::move(cb), ref); // 加入任务队列 native_immediates_.Push(std::move(callback)); }
在事件循环的check阶段就会执行里面的任务,从而执行回调DestroyAsyncIdsCallback。
void AsyncWrap::DestroyAsyncIdsCallback(Environment* env) { Local<Function> fn = env->async_hooks_destroy_function(); do { std::vector<double> destroy_async_id_list; destroy_async_id_list.swap(*env->destroy_async_id_list()); // 遍历销毁的async id for (auto async_id : destroy_async_id_list) { HandleScope scope(env->isolate()); Local<Value> async_id_value = Number::New(env->isolate(), async_id); // 执行JS层回调 MaybeLocal<Value> ret = fn->Call(env->context(), Undefined(env->isolate()), 1, &async_id_value); } } while (!env->destroy_async_id_list()->empty()); }
我们通常以以下方式使用Async hooks
const async_hooks = require('async_hooks'); async_hooks.createHook({ init(asyncId, type, triggerAsyncId) {}, before(asyncId) {}, after(asyncId) {}, destroy(asyncId) {}, promiseResolve(asyncId), }) .enable();
async_hooks是对资源生命周期的抽象,资源就是操作对象和回调的抽象。async_hooks定义了五个生命周期钩子,当资源的状态到达某个周期节点时,async_hooks就会触发对应的钩子。下面我们看一下具体的实现。我们首先看一下createHook。
function createHook(fns) { return new AsyncHook(fns); }
createHook是对AsyncHook的封装
class AsyncHook { constructor({ init, before, after, destroy, promiseResolve }) { // 记录回调 this[init_symbol] = init; this[before_symbol] = before; this[after_symbol] = after; this[destroy_symbol] = destroy; this[promise_resolve_symbol] = promiseResolve; } }
AsyncHook的初始化很简单,创建一个AsyncHook对象记录回调函数。创建了AsyncHook之后,我们需要调用AsyncHook的enable函数手动开启。
class AsyncHook { enable() { // 获取一个AsyncHook对象数组和一个整形数组 const [hooks_array, hook_fields] = getHookArrays(); // 执行过enable了则不需要再执行 if (hooks_array.includes(this)) return this; // 做些统计 const prev_kTotals = hook_fields[kTotals]; hook_fields[kTotals] = hook_fields[kInit] += +!!this[init_symbol]; hook_fields[kTotals] += hook_fields[kBefore] += +!!this[before_symbol]; hook_fields[kTotals] += hook_fields[kAfter] += +!!this[after_symbol]; hook_fields[kTotals] += hook_fields[kDestroy] += +!!this[destroy_symbol]; hook_fields[kTotals] += hook_fields[kPromiseResolve] += +!!this[promise_resolve_symbol]; // 当前对象插入数组中 hooks_array.push(this); // 如果之前的数量是0,本次操作后大于0则开启底层的逻辑 if (prev_kTotals === 0 && hook_fields[kTotals] > 0) { enableHooks(); } return this; } }
1 hooks_array:是一个AsyncHook对象数组,主要用于记录用户创建了哪些AsyncHook对象,然后哪些AsyncHook对象里都设置了哪些钩子,在回调的时候就会遍历这个对象数组,执行里面的回调。 2 hook_fields:对应底层的async_hook_fields。 3 enableHooks:
function enableHooks() { // 记录async_hooks的开启个数 async_hook_fields[kCheck] += 1; }
至此,async_hooks的初始化就完成了,我们发现逻辑非常简单。下面我们看一下他是如何串起来的。下面我们以TCP模块为例。
const { createHook, executionAsyncId } = require('async_hooks'); const fs = require('fs'); const net = require('net'); createHook({ init(asyncId, type, triggerAsyncId) { fs.writeSync( 1, `${type}(${asyncId}): trigger: ${triggerAsyncId} execution: ${executionAsyncId()}\n`); } }).enable(); net.createServer((conn) => {}).listen(8080);
以上代码输出
init: type: TCPSERVERWRAP asyncId: 2 trigger id: 1 executionAsyncId(): 1 triggerAsyncId(): 0 init: type: TickObject asyncId: 3 trigger id: 2 executionAsyncId(): 1 triggerAsyncId(): 0 before: asyncId: 3 executionAsyncId(): 3 triggerAsyncId(): 2 after: asyncId: 3 executionAsyncId(): 3 triggerAsyncId(): 2
下面我们来分析具体过程。我们知道创建资源的时候会执行init回调,具体逻辑在listen函数中,在listen函数中,通过层层调用会执行new TCP新建一个对象,表示服务器。TCP是C++层导出的类,刚才我们说过,TCP会继承AsyncWrap,新建AsyncWrap对象的时候会触发init钩子,结构图如下。 对应输出
init: type: TCPSERVERWRAP asyncId: 2 trigger id: 1 executionAsyncId(): 1 triggerAsyncId(): 0
那TickObject是怎么来的呢?我们接着看listen里的另一段逻辑。
this[async_id_symbol] = getNewAsyncId(this._handle); defaultTriggerAsyncIdScope(this[async_id_symbol], process.nextTick, emitListeningNT, this);
上面的代码我们刚才已经分析过,在执行process.nextTick的时候会创建一个TickObject对象封装执行上下文和回调。
const asyncId = newAsyncId(); const triggerAsyncId = getDefaultTriggerAsyncId(); const tickObject = { [async_id_symbol]: asyncId, [trigger_async_id_symbol]: triggerAsyncId, callback, args }; emitInit(asyncId, 'TickObject', triggerAsyncId, tickObject);
这次再次触发了init钩子,结构如下(nextTick通过getDefaultTriggerAsyncId获取的id是defaultTriggerAsyncIdScope设置的id)。 对应输出
init: type: TickObject asyncId: 3 trigger id: 2 executionAsyncId(): 1 triggerAsyncId(): 0
接着执行tick任务。
const asyncId = tock[async_id_symbol]; emitBefore(asyncId, tock[trigger_async_id_symbol]); try { tock.callback(); } finally { if (destroyHooksExist()) emitDestroy(asyncId); } emitAfter(asyncId);
emitBefore时,结构图如下。 对应输出
before: asyncId: 3 executionAsyncId(): 3 triggerAsyncId(): 2 after: asyncId: 3 executionAsyncId(): 3 triggerAsyncId(): 2
执行完我们的JS代码后,所有入栈的上下文都会被清空,结构图如下。 如果这时候有一个连接建立会输出什么呢?当有连接建立时,会执行C++层的OnConnection。 OnConnection会创建一个新的TCP对象表示和客户端通信的对象。
MaybeLocal<Object> TCPWrap::Instantiate(Environment* env, AsyncWrap* parent, TCPWrap::SocketType type) { EscapableHandleScope handle_scope(env->isolate()); AsyncHooks::DefaultTriggerAsyncIdScope trigger_scope(parent); return handle_scope.EscapeMaybe( constructor->NewInstance(env->context(), 1, &type_value)); }
首先定义了一个AsyncHooks::DefaultTriggerAsyncIdScope。DefaultTriggerAsyncIdScope用于设置默认default_trigger_async_id为parent的async id(值是2),执行Instantiate时会执行析构函数恢复原来状态。接着NewInstance的时候就会新建一个TCPWrap对象,从而创建一个AsyncWrap对象。然后触发init钩子,结构图如下。 对应输出
init: type: TCPWRAP asyncId: 4 trigger id: 2 executionAsyncId(): 0 triggerAsyncId(): 0
创建完对象后,通过AsyncWrap::MakeCallback回调JS层,刚才我们已经分析过AsyncWrap::MakeCallback会触发before和after钩子,触发before钩子时,结构图如下。 对应输出
before: asyncId: 2 executionAsyncId(): 2 triggerAsyncId(): 1
同样,在回调函数里执行executionAsyncId和triggerAsyncId拿到的内容是一样的。触发after后再恢复上下文,所以输出也是一样的。
after: asyncId: 2 executionAsyncId(): 2 triggerAsyncId(): 1
异步资源并不是Node.js内置的,Node.js只是提供了一套机制,业务层也可以使用。Node.js也提供了一个类给业务使用,核心代码如下。
class AsyncResource { constructor(type, opts = {}) { let triggerAsyncId = opts; let requireManualDestroy = false; if (typeof opts !== 'number') { triggerAsyncId = opts.triggerAsyncId === undefined ? getDefaultTriggerAsyncId() : opts.triggerAsyncId; requireManualDestroy = !!opts.requireManualDestroy; } const asyncId = newAsyncId(); this[async_id_symbol] = asyncId; this[trigger_async_id_symbol] = triggerAsyncId; if (initHooksExist()) { emitInit(asyncId, type, triggerAsyncId, this); } } runInAsyncScope(fn, thisArg, ...args) { const asyncId = this[async_id_symbol]; emitBefore(asyncId, this[trigger_async_id_symbol]); const ret = thisArg === undefined ? fn(...args) : ReflectApply(fn, thisArg, args); emitAfter(asyncId); return ret; } emitDestroy() { if (this[destroyedSymbol] !== undefined) { this[destroyedSymbol].destroyed = true; } emitDestroy(this[async_id_symbol]); return this; } asyncId() { return this[async_id_symbol]; } triggerAsyncId() { return this[trigger_async_id_symbol]; } }
使用方式如下。
const { AsyncResource, executionAsyncId,triggerAsyncId } = require('async_hooks'); const asyncResource = new AsyncResource('Demo'); asyncResource.runInAsyncScope(() => { console.log(executionAsyncId(), triggerAsyncId()) });
runInAsyncScope中会把asyncResource的执行上下文设置为当前执行上下文,async id是2,trigger async id是1,所以在回调里执行executionAsyncId输出的是2,triggerAsyncId输出的是1。
AsyncLocalStorage是基于AsyncResource实现的一个维护异步逻辑中公共上下文的类。我们可以把他理解为Redis。我们看一下怎么使用。
const { AsyncLocalStorage } = require('async_hooks'); const asyncLocalStorage = new AsyncLocalStorage(); function logWithId(msg) { const id = asyncLocalStorage.getStore(); console.log(`${id !== undefined ? id : '-'}:`, msg); } asyncLocalStorage.run(1, () => { logWithId('start'); setImmediate(() => { logWithId('finish'); }); });
执行上面代码会输出
1: start 1: finish
run的时候初始化公共的上下文,然后在run里执行的异步代码也可以拿得到这个公共上下文,这个在记录日志traceId时就会很有用,否则我们就需要把traceId传遍代码每个需要的地方。下面我们看一下实现。
我们先看一下创建AsyncLocalStorage的逻辑
class AsyncLocalStorage { constructor() { this.kResourceStore = Symbol('kResourceStore'); this.enabled = false; } }
创建AsyncLocalStorage的时候很简单,主要是置状态为false,并且设置kResourceStore的值为Symbol('kResourceStore')。设置为Symbol('kResourceStore')而不是‘kResourceStore‘很重要,我们后面会看到。继续看一下执行AsyncLocalStorage.run的逻辑。
run(store, callback, ...args) { // 新建一个AsyncResource const resource = new AsyncResource('AsyncLocalStorage', defaultAlsResourceOpts); // 通过runInAsyncScope把resource的执行上下文设置完当前的执行上下文 return resource.emitDestroy().runInAsyncScope(() => { this.enterWith(store); return ReflectApply(callback, null, args); }); }
设置完上下文之后执行runInAsyncScope的回调,回调里首先执行里enterWith。
enterWith(store) { // 修改AsyncLocalStorage状态 this._enable(); // 获得当前执行上下文对于多资源,也就是run里创建的resource const resource = executionAsyncResource(); // 把公共上下文挂载到对象上 resource[this.kResourceStore] = store; } _enable() { if (!this.enabled) { this.enabled = true; ArrayPrototypePush(storageList, this); storageHook.enable(); } }
挂载完公共上下文后,就执行业务回调。回调里可以通过asyncLocalStorage.getStore()获得设置的公共上下文。
getStore() { if(this.enabled) { const resource = executionAsyncResource(); return resource[this.kResourceStore]; } }
getStore的原理很简单,就是首先拿到当前执行上下文对应的资源,然后根据AsyncLocalStorage的kResourceStore的值从resource中拿到公共上下文。如果是同步执行getStore,那么executionAsyncResource返回的就是我们在run的时候创建的AsyncResource,但是如果是异步getStore那么怎么办呢?因为这时候executionAsyncResource返回的不再是我们创建的AsyncResource,也就拿不到他挂载的公共上下文。为了解决这个问题,Node.js对公共上下文进行了传递。
const storageList = []; // AsyncLocalStorage对象数组 const storageHook = createHook({ init(asyncId, type, triggerAsyncId, resource) { const currentResource = executionAsyncResource(); for (let i = 0; i < storageList.length; ++i) { storageList[i]._propagate(resource, currentResource); } } }); _propagate(resource, triggerResource) { const store = triggerResource[this.kResourceStore]; if (this.enabled) { resource[this.kResourceStore] = store; } }
我们看到Node.js内部创建了一个Hooks,在每次资源创建的时候,Node.js会把当前执行上下文对应的资源中的一个或多个key(根据storageList里对象的this.kResourceStore字段)对应的值挂载到新创建的资源中。所以在asyncLocalStorage.getStore()时即使不是我们在执行run时创建的资源对象,也可以获得具体asyncLocalStorage对象所设置的资源,我们再来看一个例子。
const { AsyncLocalStorage } = require('async_hooks'); const asyncLocalStorage = new AsyncLocalStorage(); const asyncLocalStorage2 = new AsyncLocalStorage(); function logWithId(msg) { console.log(asyncLocalStorage2.getStore()); const id = asyncLocalStorage.getStore(); console.log(`${id !== undefined ? id : '-'}:`, msg); } asyncLocalStorage.run(0, () => { asyncLocalStorage2.enterWith({hello: "world"}); logWithId('start'); setImmediate(() => { logWithId('finish'); }); });
除了通过asyncLocalStorage.run设置上下文,我们通过asyncLocalStorage2.enterWith也给对象上下文的资源对象挂载一个新属性,key是Symbol('kResourceStore'),值是{hello: "world"},然后在logWithId中输出asyncLocalStorage2.getStore()。从输出中可以看到成功从资源中获得挂载的所有上下文。
{ hello: 'world' } 0: start { hello: 'world' } 0: finish
我们也可以修改源码验证
Immediate { _idleNext: null, _idlePrev: null, _onImmediate: [Function (anonymous)], _argv: undefined, _destroyed: true, [Symbol(refed)]: null, [Symbol(asyncId)]: 6, [Symbol(triggerId)]: 2, [Symbol(kResourceStore)]: 0, [Symbol(kResourceStore)]: { hello: 'world' } }
可以看到资源对象挂载里两个key为Symbol(kResourceStore)的属性。
const async_hooks = require('async_hooks'); const eid = async_hooks.executionAsyncId(); const tid = async_hooks.triggerAsyncId(); console.log(eid, tid);
以上代码中,输出1和0。对应的API实现如下。
// 获取当前的async id function executionAsyncId() { return async_id_fields[kExecutionAsyncId]; } // 获取当前的trigger async id,即触发当前代码的async id function triggerAsyncId() { return async_id_fields[kTriggerAsyncId]; }
那么async_id_fields的初始化是什么呢?从env.h定义中可以看到async_idfields(async_id_fields是上层使用的名称,对应底层的async_idfields)是AliasedFloat64Array类型。
AliasedFloat64Array async_id_fields_;
AliasedFloat64Array是个类型别名。
typedef AliasedBufferBase<double, v8::Float64Array> AliasedFloat64Array;
AliasedBufferBase的构造函数如下
AliasedBufferBase(v8::Isolate* isolate, const size_t count) : isolate_(isolate), count_(count), byte_offset_(0) { const v8::HandleScope handle_scope(isolate_); const size_t size_in_bytes = MultiplyWithOverflowCheck(sizeof(NativeT), count); v8::Local<v8::ArrayBuffer> ab = v8::ArrayBuffer::New(isolate_, size_in_bytes); // ... }
底层是一个ArrayBuffer。
Local<ArrayBuffer> v8::ArrayBuffer::New(Isolate* isolate, size_t byte_length) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, ArrayBuffer, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i::MaybeHandle<i::JSArrayBuffer> result = i_isolate->factory()->NewJSArrayBufferAndBackingStore( byte_length, i::InitializedFlag::kZeroInitialized); // ... }
ArrayBuffer::New在申请内存时传入了i::InitializedFlag::kZeroInitialized。从V8定义中可以看到会初始化内存的内容为0。
// Whether the backing store memory is initialied to zero or not. enum class InitializedFlag : uint8_t { kUninitialized, kZeroInitialized };
回到例子中,为什么输出会是1和0而不是0和0呢?答案在Node.js启动时的这段代码。
{ InternalCallbackScope callback_scope( env.get(), Local<Object>(), // async id和trigger async id { 1, 0 }, InternalCallbackScope::kAllowEmptyResource | InternalCallbackScope::kSkipAsyncHooks); // 执行我们的js LoadEnvironment(env.get()); }
InternalCallbackScope刚才已经分析过,他会把1和0设置为当前的执行上下文。然后在LoadEnvironment里执行我的JS代码时获取到的值就是1和0。那么如果我们改成以下代码会输出什么呢?
const async_hooks = require('async_hooks'); Promise.resolve().then(() => { const eid = async_hooks.executionAsyncId(); const tid = async_hooks.triggerAsyncId(); console.log(eid, tid); })
以上代码会输出0和。因为执行完我们的JS代码后,InternalCallbackScope就被析构了,从而恢复为0和0。
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8