HashMap是我们平时开发过程中用的比较多的集合,但它是非线程安全的,在涉及到多线程并发的情况,进行put操作有可能会引起死循环,导致CPU利用率接近100%。
final HashMap<String, String> map = new HashMap<String, String>(2); for (int i = 0; i < 10000; i++) { new Thread(new Runnable() { @Override public void run() { map.put(UUID.randomUUID().toString(), ""); } }).start(); }
解决方案有Hashtable和Collections.synchronizedMap(hashMap),不过这两个方案基本上是对读写进行加锁操作,一个线程在读写元素,其余线程必须等待,性能可想而知。
所以,Doug Lea给我们带来了并发安全的ConcurrentHashMap,它的实现是依赖于 Java 内存模型,所以我们在了解 ConcurrentHashMap 的之前必须了解一些底层的知识:
本文源码是JDK8的版本,与之前的版本有较大差异。
ConcurrentHashMap采用 分段锁的机制,实现并发的更新操作,底层采用数组+链表+红黑树的存储结构。 其包含两个核心静态内部类 Segment和HashEntry。
一个 ConcurrentHashMap 实例中包含由若干个 Segment 对象组成的数组,下面我们通过一个图来演示一下 ConcurrentHashMap 的结构:
1.8的实现已经抛弃了Segment分段锁机制,利用CAS+Synchronized来保证并发更新的安全,底层依然采用数组+链表+红黑树的存储结构。
在开始之前,有些重要的概念需要介绍一下:
table:默认为null,初始化发生在第一次插入操作,默认大小为16的数组,用来存储Node节点数据,扩容时大小总是2的幂次方。
nextTable:默认为null,扩容时新生成的数组,其大小为原数组的两倍。
sizeCtl
:默认为0,用来控制table的初始化和扩容操作,具体应用在后续会体现出来。
Node
:保存key,value及key的hash值的数据结构。
class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key; volatile V val; volatile Node<K,V> next; ... 省略部分代码 }
其中value和next都用volatile修饰,保证并发的可见性。
ForwardingNode
:一个特殊的Node节点,hash值为-1,其中存储nextTable的引用。
final class ForwardingNode<K,V> extends Node<K,V> { final Node<K,V>[] nextTable; ForwardingNode(Node<K,V>[] tab) { super(MOVED, null, null, null); this.nextTable = tab; } }
只有table发生扩容的时候,ForwardingNode才会发挥作用,作为一个占位符放在table中表示当前节点为null或则已经被移动。
实例化ConcurrentHashMap时带参数时,会根据参数调整table的大小,假设参数为100,最终会调整成256,确保table的大小总是2的幂次方,算法如下:
ConcurrentHashMap<String, String> hashMap = new ConcurrentHashMap<>(100); private static final int tableSizeFor(int c) { int n = c - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; }
注意,ConcurrentHashMap在构造函数中只会初始化sizeCtl值,并不会直接初始化table,而是延缓到第一次put操作。
前面已经提到过,table初始化操作会延缓到第一次put行为。但是put是可以并发执行的,Doug Lea是如何实现table只初始化一次的?让我们来看看源码的实现。
private final Node<K,V>[] initTable() { Node<K,V>[] tab; int sc; while ((tab = table) == null || tab.length == 0) { //如果一个线程发现sizeCtl<0,意味着另外的线程执行CAS操作成功,当前线程只需要让出cpu时间片 if ((sc = sizeCtl) < 0) Thread.yield(); // lost initialization race; just spin else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { try { if ((tab = table) == null || tab.length == 0) { int n = (sc > 0) ? sc : DEFAULT_CAPACITY; @SuppressWarnings("unchecked") Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; table = tab = nt; sc = n - (n >>> 2); } } finally { sizeCtl = sc; } break; } } return tab; }
sizeCtl默认为0,如果ConcurrentHashMap实例化时有传参数,sizeCtl会是一个2的幂次方的值。所以执行第一次put操作的线程会执行Unsafe.compareAndSwapInt方法修改sizeCtl为-1,有且只有一个线程能够修改成功,其它线程通过Thread.yield()让出CPU时间片等待table初始化完成。
假设table已经初始化完成,put操作采用CAS+synchronized实现并发插入或更新操作,具体实现如下。
final V putVal(K key, V value, boolean onlyIfAbsent) { if (key == null || value == null) throw new NullPointerException(); int hash = spread(key.hashCode()); int binCount = 0; for (Node<K,V>[] tab = table;;) { Node<K,V> f; int n, i, fh; if (tab == null || (n = tab.length) == 0) tab = initTable(); else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null))) break; // no lock when adding to empty bin } else if ((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); ...省略部分代码 } addCount(1L, binCount); return null; }
hash算法
static final int spread(int h) {return (h ^ (h >>> 16)) & HASH_BITS;}
table中定位索引位置,n是table的大小
int index = (n - 1) & hash
获取table中对应索引的元素f。 Doug Lea采用Unsafe.getObjectVolatile来获取,也许有人质疑,直接table[index]不可以么,为什么要这么复杂? 在java内存模型中,我们已经知道每个线程都有一个工作内存,里面存储着table的副本,虽然table是volatile修饰的,但不能保证线程每次都拿到table中的最新元素,Unsafe.getObjectVolatile可以直接获取指定内存的数据,保证了每次拿到数据都是最新的。
如果f为null,说明table中这个位置第一次插入元素,利用Unsafe.compareAndSwapObject方法插入Node节点。
如果f的hash值为-1,说明当前f是ForwardingNode节点,意味有其它线程正在扩容,则一起进行扩容操作。
其余情况把新的Node节点按链表或红黑树的方式插入到合适的位置,这个过程采用同步内置锁实现并发,代码如下:
synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { binCount = 1; for (Node<K,V> e = f;; ++binCount) { K ek; if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { oldVal = e.val; if (!onlyIfAbsent) e.val = value; break; } Node<K,V> pred = e; if ((e = e.next) == null) { pred.next = new Node<K,V>(hash, key, value, null); break; } } } else if (f instanceof TreeBin) { Node<K,V> p; binCount = 2; if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) { oldVal = p.val; if (!onlyIfAbsent) p.val = value; } } } }
在节点f上进行同步,节点插入之前,再次利用tabAt(tab, i) == f判断,防止被其它线程修改。
当table容量不足的时候,即table的元素数量达到容量阈值sizeCtl,需要对table进行扩容。 整个扩容分为两部分:
这两个过程在单线程下实现很简单,但是ConcurrentHashMap是支持并发插入的,扩容操作自然也会有并发的出现,这种情况下,第二步可以支持节点的并发复制,这样性能自然提升不少,但实现的复杂度也上升了一个台阶。
先看第一步,构建nextTable,毫无疑问,这个过程只能只有单个线程进行nextTable的初始化,具体实现如下:
private final void addCount(long x, int check) { ... 省略部分代码 if (check >= 0) { Node<K,V>[] tab, nt; int n, sc; while (s >= (long)(sc = sizeCtl) && (tab = table) != null && (n = tab.length) < MAXIMUM_CAPACITY) { int rs = resizeStamp(n); if (sc < 0) { if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) break; if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) transfer(tab, nt); } else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) transfer(tab, null); s = sumCount(); } } }
通过Unsafe.compareAndSwapInt修改sizeCtl值,保证只有一个线程能够初始化nextTable,扩容后的数组长度为原来的两倍,但是容量是原来的1.5。
节点从table移动到nextTable,大体思想是遍历、复制的过程。
遍历过所有的节点以后就完成了复制工作,把table指向nextTable,并更新sizeCtl为新数组大小的0.75倍 ,扩容完成。
注意:如果链表结构中元素超过TREEIFY_THRESHOLD阈值,默认为8个,则把链表转化为红黑树,提高遍历查询效率。
if (binCount != 0) { if (binCount >= TREEIFY_THRESHOLD) treeifyBin(tab, i); if (oldVal != null) return oldVal; break; }
接下来我们看看如何构造树结构,代码如下:
private final void treeifyBin(Node<K,V>[] tab, int index) { Node<K,V> b; int n, sc; if (tab != null) { if ((n = tab.length) < MIN_TREEIFY_CAPACITY) tryPresize(n << 1); else if ((b = tabAt(tab, index)) != null && b.hash >= 0) { synchronized (b) { if (tabAt(tab, index) == b) { TreeNode<K,V> hd = null, tl = null; for (Node<K,V> e = b; e != null; e = e.next) { TreeNode<K,V> p = new TreeNode<K,V>(e.hash, e.key, e.val, null, null); if ((p.prev = tl) == null) hd = p; else tl.next = p; tl = p; } setTabAt(tab, index, new TreeBin<K,V>(hd)); } } } } }
可以看出,生成树节点的代码块是同步的,进入同步代码块之后,再次验证table中index位置元素是否被修改过。 1、根据table中index位置Node链表,重新生成一个hd为头结点的TreeNode链表。 2、根据hd头结点,生成TreeBin树结构,并把树结构的root节点写到table的index位置的内存中,具体实现如下:
TreeBin(TreeNode<K,V> b) { super(TREEBIN, null, null, null); this.first = b; TreeNode<K,V> r = null; for (TreeNode<K,V> x = b, next; x != null; x = next) { next = (TreeNode<K,V>)x.next; x.left = x.right = null; if (r == null) { x.parent = null; x.red = false; r = x; } else { K k = x.key; int h = x.hash; Class<?> kc = null; for (TreeNode<K,V> p = r;;) { int dir, ph; K pk = p.key; if ((ph = p.hash) > h) dir = -1; else if (ph < h) dir = 1; else if ((kc == null && (kc = comparableClassFor(k)) == null) || (dir = compareComparables(kc, k, pk)) == 0) dir = tieBreakOrder(k, pk); TreeNode<K,V> xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { x.parent = xp; if (dir <= 0) xp.left = x; else xp.right = x; r = balanceInsertion(r, x); break; } } } } this.root = r; assert checkInvariants(root); }
主要根据Node节点的hash值大小构建二叉树。这个红黑树的构造过程实在有点复杂,感兴趣的同学可以看看源码。
get操作和put操作相比,显得简单了许多。
public V get(Object key) { Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek; int h = spread(key.hashCode()); if ((tab = table) != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null) { if ((eh = e.hash) == h) { if ((ek = e.key) == key || (ek != null && key.equals(ek))) return e.val; } else if (eh < 0) return (p = e.find(h, key)) != null ? p.val : null; while ((e = e.next) != null) { if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))) return e.val; } } return null; }
ConcurrentHashMap 是一个并发散列映射表的实现,它允许完全并发的读取,并且支持给定数量的并发更新。相比于 HashTable 和同步包装器包装的 HashMap,使用一个全局的锁来同步不同线程间的并发访问,同一时间点,只能有一个线程持有锁,也就是说在同一时间点,只能有一个线程能访问容器,这虽然保证多线程间的安全并发访问,但同时也导致对容器的访问变成串行化的了。
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8