我们都知道,cpu是时分复用的,也就是把cpu的时间片,分配给不同的thread/process轮流执行,时间片与时间片之间,需要进行cpu切换,也就是会发生进程的切换。切换涉及到清空寄存器,缓存数据。然后重新加载新的thread所需数据。当一个线程被挂起时,加入到阻塞队列,在一定的时间或条件下,在通过notify(),notifyAll()唤醒回来。 在某个资源不可用的时候,就将cpu让出,把当前等待线程切换为阻塞状态。等到资源(比如一个共享数据)可用了,那么就将线程唤醒,让他进入runnable状态等待cpu调度。这就是典型的悲观锁的实现。 独占锁是一种悲观锁,synchronized就是一种独占锁,它假设最坏的情况,认为一个线程修改共享数据的时候其他线程也会修改该数据,因此只在确保其它线程不会造成干扰的情况下执行,会导致其它所有需要锁的线程挂起,等待持有锁的线程释放锁。
但是,由于在进程挂起和恢复执行过程中存在着很大的开销。当一个线程正在等待锁时,它不能做任何事,所以悲观锁有很大的缺点。举个例子,如果一个线程需要某个资源,但是这个资源的占用时间很短,当线程第一次抢占这个资源时,可能这个资源被占用,如果此时挂起这个线程,可能立刻就发现资源可用,然后又需要花费很长的时间重新抢占锁,时间代价就会非常的高。
所以就有了乐观锁的概念,他的核心思路就是,每次不加锁而是假设修改数据之前其他线程一定不会修改,如果因为修改过产生冲突就失败就重试,直到成功为止。 在上面的例子中,某个线程可以不让出cpu,而是一直while循环,如果失败就重试,直到成功为止。所以,当数据争用不严重时,乐观锁效果更好。比如CAS就是一种乐观锁思想的应用。
CAS 操作包含三个操作数 —— 内存位置(V)、预期原值(A)和新值(B)。执行CAS操作的时候,将内存位置的值与预期原值比较,如果相匹配,那么处理器会自动将该位置值更新为新值。否则,处理器不做任何操作。
举个CAS操作的应用场景的一个例子,当一个线程需要修改共享变量的值。完成这个操作,先取出共享变量的值赋给A,然后基于A的基础进行计算,得到新值B,完了需要更新共享变量的值了,这个时候就可以调用CAS方法更新变量值了。
在java中可以通过锁和循环CAS的方式来实现原子操作。Java中java.util.concurrent.atomic包相关类就是 CAS的实现,atomic包里包括以下类:
java.util.concurrent.atomic
boolean
int
volatile int
long
volatile long
AtomicMarkableReference
volatile
AtomicStampedReference
下面我们来已AtomicIneger的源码为例来看看CAS操作:
public final int getAndAdd(int delta) { for (; ; ) { int current = get(); int next = current + delta; if (compareAndSet(current, next)) return current; } }
这里很显然使用CAS操作(for(;;)里面),他每次都从内存中读取数据,+1操作,然后两个值进行CAS操作。如果成功则返回,否则失败重试,直到修改成功为止。上面源码最关键的地方有两个,一个for循环,它代表着一种宁死不屈的精神,不成功誓不罢休。还有就是compareAndSet:
public final boolean compareAndSet(int expect, int update) { return unsafe.compareAndSwapInt(this, valueOffset, expect, update); }
compareAndSet方法内部是调用Java本地方法compareAndSwapInt来实现的,而compareAndSwapInt方法内部又是借助C来调用CPU的底层指令来保证在硬件层面上实现原子操作的。在intel处理器中,CAS是通过调用cmpxchg指令完成的。这就是我们常说的CAS操作(compare and swap)。
CAS虽然很高效的解决原子操作,但是CAS仍然存在三大问题。ABA问题,循环时间长开销大和只能保证一个共享变量的原子操作。
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8