普里姆(Prim)算法,是用来求加权连通图的最小生成树的算法。
基本思想
对于图G而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边。 从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边。
以上图G4为例,来对普里姆进行演示(从第一个顶点A开始通过普里姆算法生成最小生成树)。
初始状态:V是所有顶点的集合,即V={A,B,C,D,E,F,G};U和T都是空!
第1步:将顶点A加入到U中。
此时,U={A}。
第2步:将顶点B加入到U中。
上一步操作之后,U={A}, V-U={B,C,D,E,F,G};因此,边(A,B)的权值最小。将顶点B添加到U中;此时,U={A,B}。
第3步:将顶点F加入到U中。
上一步操作之后,U={A,B}, V-U={C,D,E,F,G};因此,边(B,F)的权值最小。将顶点F添加到U中;此时,U={A,B,F}。
第4步:将顶点E加入到U中。
上一步操作之后,U={A,B,F}, V-U={C,D,E,G};因此,边(F,E)的权值最小。将顶点E添加到U中;此时,U={A,B,F,E}。
第5步:将顶点D加入到U中。
上一步操作之后,U={A,B,F,E}, V-U={C,D,G};因此,边(E,D)的权值最小。将顶点D添加到U中;此时,U={A,B,F,E,D}。
第6步:将顶点C加入到U中。
上一步操作之后,U={A,B,F,E,D}, V-U={C,G};因此,边(D,C)的权值最小。将顶点C添加到U中;此时,U={A,B,F,E,D,C}。
第7步:将顶点G加入到U中。
上一步操作之后,U={A,B,F,E,D,C}, V-U={G};因此,边(F,G)的权值最小。将顶点G添加到U中;此时,U=V。
此时,最小生成树构造完成!它包括的顶点依次是:A B F E D C G。
以"邻接矩阵"为例对普里姆算法进行说明。
1. 基本定义
public class MatrixUDG { private char[] mVexs; // 顶点集合 private int[][] mMatrix; // 邻接矩阵 private static final int INF = Integer.MAX_VALUE; // 最大值 ... }
MatrixUDG是邻接矩阵对应的结构体。mVexs用于保存顶点,mEdgNum用于保存边数,mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。
2. 普里姆算法
/* * prim最小生成树 * * 参数说明: * start -- 从图中的第start个元素开始,生成最小树 */ public void prim(int start) { int num = mVexs.length; // 顶点个数 int index=0; // prim最小树的索引,即prims数组的索引 char[] prims = new char[num]; // prim最小树的结果数组 int[] weights = new int[num]; // 顶点间边的权值 // prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。 prims[index++] = mVexs[start]; // 初始化"顶点的权值数组", // 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。 for (int i = 0; i < num; i++ ) weights[i] = mMatrix[start][i]; // 将第start个顶点的权值初始化为0。 // 可以理解为"第start个顶点到它自身的距离为0"。 weights[start] = 0; for (int i = 0; i < num; i++) { // 由于从start开始的,因此不需要再对第start个顶点进行处理。 if(start == i) continue; int j = 0; int k = 0; int min = INF; // 在未被加入到最小生成树的顶点中,找出权值最小的顶点。 while (j < num) { // 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。 if (weights[j] != 0 && weights[j] < min) { min = weights[j]; k = j; } j++; } // 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。 // 将第k个顶点加入到最小生成树的结果数组中 prims[index++] = mVexs[k]; // 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。 weights[k] = 0; // 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。 for (j = 0 ; j < num; j++) { // 当第j个节点没有被处理,并且需要更新时才被更新。 if (weights[j] != 0 && mMatrix[k][j] < weights[j]) weights[j] = mMatrix[k][j]; } } // 计算最小生成树的权值 int sum = 0; for (int i = 1; i < index; i++) { int min = INF; // 获取prims[i]在mMatrix中的位置 int n = getPosition(prims[i]); // 在vexs[0...i]中,找出到j的权值最小的顶点。 for (int j = 0; j < i; j++) { int m = getPosition(prims[j]); if (mMatrix[m][n]<min) min = mMatrix[m][n]; } sum += min; } // 打印最小生成树 System.out.printf("PRIM(%c)=%d: ", mVexs[start], sum); for (int i = 0; i < index; i++) System.out.printf("%c ", prims[i]); System.out.printf("\n"); }
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8