一、题目

我们把只包含因子2、3 和5 的数称作丑数(Ugly Number)。求从小到大的顺序的第1500个丑数。

举例说明:

例如6、8 都是丑数,但14 不是,它包含因子7。习惯上我们把1 当做第一个丑数。

二、解题思路

第一种:逐个判断每个数字是不是丑数的解法,直观但不够高效。

第二种:创建数组保存已经找到丑数,用空间换时间的解法。

根据丑数的定义, 丑数应该是另一个丑数乘以2、3 或者5 的结果(1除外)。因此我们可以创建一个数组,里面的数字是排好序的丑数,每一个丑数都是前面的丑数乘以2、3或者5得到的。

这种思路的关键在于怎样确保数组里面的丑数是排好序的。假设数组中已经有若干个丑数排好序后存放在数组中,并且把己有最大的丑数记做M,我们接下来分析如何生成下一个丑数。该丑数肯定是前面某一个丑数乘以2、3 或者5 的结果, 所以我们首先考虑把已有的每个丑数乘以2。在乘以2 的时候能得到若干个小于或等于M 的结果。由于是按照顺序生成的,小于或者等于M 肯定己经在数组中了,我们不需再次考虑:还会得到若干个大于M 的结果,但我们只需要第一个大于M 的结果,因为我们希望丑数是按从小到大的顺序生成的,其他更大的结果以后再说。我们把得到的第一个乘以2 后大于M 的结果记为M2,同样,我们把已有的每一个丑数乘以3 和5,能得到第一个大于M 的结果M3 和M5,那么下一个丑数应该是M2、M3 和M5这3个数的最小者。

前面分析的时候,提到把已有的每个丑数分别都乘以2、3 和5。事实上这不是必须的,因为已有的丑数是按顺序存放在数组中的。对乘以2而言, 肯定存在某一个丑数T2,排在它之前的每一个丑数乘以2 得到的结果都会小于已有最大的丑数,在它之后的每一个丑数乘以2 得到的结果都会太大。我们只需记下这个丑数的位置, 同时每次生成新的丑数的时候,去更新这个T2。对乘以3 和5 而言, 也存在着同样的T3和T5。

三、解题代码

public class Test {
    /**
     * 判断一个数是否只有2,3,5因子(丑数)
     *
     * @param num 待判断的数,非负
     * @return true是丑数,false丑数
     */
    private static boolean isUgly(int num) {
        while (num % 2 == 0) {
            num /= 2;
        }

        while (num % 3 == 0) {
            num /= 3;
        }

        while (num % 5 == 0) {
            num /= 5;
        }

        return num == 1;
    }

    /**
     * 找第index个丑数,速度太慢
     *
     * @param index 第index个丑数
     * @return 对应的丑数值
     */
    public static int getUglyNumber(int index) {
        if (index <= 0) {
            return 0;
        }

        int num = 0;
        int uglyFound = 0;
        while (uglyFound < index) {
            num++;
            if (isUgly(num)) {
                ++uglyFound;
            }
        }

        return num;
    }

    /**
     * 找第index个丑数,【第二种方法】
     *
     * @param index 第index个丑数
     * @return 对应的丑数值
     */
    public static int getUglyNumber2(int index) {
        if (index <= 0) {
            return 0;
        }

        int[] pUglyNumbers = new int[index];
        pUglyNumbers[0] = 1;
        int nextUglyIndex = 1;

        int p2 = 0;
        int p3 = 0;
        int p5 = 0;

        while (nextUglyIndex < index) {
            int min = min(pUglyNumbers[p2] * 2, pUglyNumbers[p3] * 3, pUglyNumbers[p5] * 5);
            pUglyNumbers[nextUglyIndex] = min;

            while (pUglyNumbers[p2] * 2 <= pUglyNumbers[nextUglyIndex]) {
                p2++;
            }

            while (pUglyNumbers[p3] * 3 <= pUglyNumbers[nextUglyIndex]) {
                p3++;
            }

            while (pUglyNumbers[p5] * 5 <= pUglyNumbers[nextUglyIndex]) {
                p5++;
            }

            nextUglyIndex++;
        }

        return pUglyNumbers[nextUglyIndex - 1];
    }

    private static int min(int n1, int n2, int n3) {
        int min = n1 < n2 ? n1 : n2;
        return min < n3 ? min : n3;
    }
}

Copyright© 2013-2020

All Rights Reserved 京ICP备2023019179号-8