Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring. Example Given the string = "abcdzdcab", return "cdzdc". Challenge O(n2) time is acceptable. Can you do it in O(n) time.
Given a string S, find the longest palindromic substring in S.
You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.
Example
Given the string = "abcdzdcab", return "cdzdc".
"abcdzdcab"
"cdzdc"
Challenge
O(n2) time is acceptable. Can you do it in O(n) time.
求一个字符串中的最长回文子串。
Time O(n^2), Space O(n^2)
用dp[i][j]来存DP的状态,需要较多的额外空间: Space O(n^2)
dp[i][j]
DP的4个要素
dp[i][j] = s.charAt(i) == s.charAt(j) && (j - i <= 2 || dp[i + 1][j - 1])
dp[i][j] = true
j - i <= 2
maxLen = j - i + 1;
longest = s.substring(i, j + 1);
这种方法基本思想是遍历数组,以其中的1个元素或者2个元素作为palindrome的中心,通过辅助函数,寻找能拓展得到的最长子字符串。外层循环 O(n),内层循环O(n),因此时间复杂度 Time O(n^2),相比动态规划二维数组存状态的方法,因为只需要存最长palindrome子字符串本身,这里空间更优化:Space O(1)。
区间DP,Time O(n^2) Space O(n^2)
public class Solution { /** * @param s input string * @return the longest palindromic substring */ public String longestPalindrome(String s) { if(s == null || s.length() <= 1) { return s; } int len = s.length(); int maxLen = 1; boolean [][] dp = new boolean[len][len]; String longest = null; for(int k = 0; k < s.length(); k++){ for(int i = 0; i < len - k; i++){ int j = i + k; if(s.charAt(i) == s.charAt(j) && (j - i <= 2 || dp[i + 1][j - 1])){ dp[i][j] = true; if(j - i + 1 > maxLen){ maxLen = j - i + 1; longest = s.substring(i, j + 1); } } } } return longest; } }
Time O(n^2) Space O(1)
public class Solution { /** * @param s input string * @return the longest palindromic substring */ public String longestPalindrome(String s) { if (s.isEmpty()) { return null; } if (s.length() == 1) { return s; } String longest = s.substring(0, 1); for (int i = 0; i < s.length(); i++) { // get longest palindrome with center of i String tmp = helper(s, i, i); if (tmp.length() > longest.length()) { longest = tmp; } // get longest palindrome with center of i, i+1 tmp = helper(s, i, i + 1); if (tmp.length() > longest.length()) { longest = tmp; } } return longest; } // Given a center, either one letter or two letter, // Find longest palindrome public String helper(String s, int begin, int end) { while (begin >= 0 && end <= s.length() - 1 && s.charAt(begin) == s.charAt(end)) { begin--; end++; } return s.substring(begin + 1, end); } }
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8