Given a string S and a string T, count the number of distinct subsequences of T in S.A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not). Here is an example: S = "rabbbit", T = "rabbit" Return 3.
Given a string S and a string T, count the number of distinct subsequences of T in S.A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).
"ACE"
"ABCDE"
"AEC"
Here is an example:
S = "rabbbit", T = "rabbit"
"rabbbit"
"rabbit"
Return 3.
3
给定两个字符串S和T,求S有多少个不同的子串与T相同。S的子串定义为在S中任意去掉0个或者多个字符形成的串。
动态规划,设dp[i][j] 是从字符串S[0...i]中删除几个字符得到字符串T[0...j]的不同的删除方法种类,动态规划方程如下
dp[i][j]
如果S[i] = T[j], dp[i][j] = dp[i-1][j-1]+dp[i-1][j]
dp[i][j] = dp[i-1][j-1]+dp[i-1
如果S[i] 不等于 T[j], dp[i][j] = dp[i-1][j]
dp[i][j] = dp[i-1][j]
初始条件:当T为空字符串时,从任意的S删除几个字符得到T的方法为1
dp[0][0] = 1; // T和S都是空串.
dp[0][0] = 1
dp[1 ... S.length() - 1][0] = 1; // T是空串,S只有一种子序列匹配。
dp[1 ... S.length() - 1][0] = 1;
dp[0][1 ... T.length() - 1] = 0; // S是空串,T不是空串,S没有子序列匹配。
dp[0][1 ... T.length() - 1] = 0;
public int numDistincts(String S, String T) { int[][] table = new int[S.length() + 1][T.length() + 1]; for (int i = 0; i < S.length(); i++) table[i][0] = 1; for (int i = 1; i <= S.length(); i++) { for (int j = 1; j <= T.length(); j++) { if (S.charAt(i - 1) == T.charAt(j - 1)) { table[i][j] += table[i - 1][j] + table[i - 1][j - 1]; } else { table[i][j] += table[i - 1][j]; } } } return table[S.length()][T.length()]; }
Copyright© 2013-2020
All Rights Reserved 京ICP备2023019179号-8